Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Интегрирование уравнений движения материальной точки, находящейся под действием переменных сил

Название: Интегрирование уравнений движения материальной точки, находящейся под действием переменных сил
Раздел: Рефераты по физике
Тип: контрольная работа Добавлен 06:10:17 24 ноября 2009 Похожие работы
Просмотров: 484 Комментариев: 21 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

«Интегрирование уравнений движения материальной точки, находящейся под действием переменных сил»


Задание: На наклонном участке АВ трубы на груз D, массой m действуют сила тяжести и сила сопротивления R, расстояние от точки А, где V=V0 , до точки В, равно L. На горизонтальном участке ВС на груз действует сила тяжести и переменная сила F = F(t).

Дано:

m = 4, кг

V0 = 12, м/с

Q = 12, Н

R = 0,8V2 , Н

L = 2.5, м

Fx = -8cos(4t), Н

Определить:

Закон движения груза на участке ВС ( x = f(t) ).

Решение:

1. Пусть груз – материальная точка. Изобразим и . Проведем ось Ax и составим дифференциальное уравнение в проекции на эту ось:

Далее находим:

Учитывая, что Vx = V:

или


Выведем:

где g = 10 м/с.

Тогда:

Разделяя переменные и интегрируя:

По Н.У. при x = 0: V = V0 , откуда:

;

Получим:

;

Откуда:

и

В результате:

Полагая, что x=L=2.5 и заменяя k и n определим VB :

2. Рассмотрим движение на BC.

Рассмотрим движение ВС (V0 = V). Изобразим , , и .

или , где

При t=0; V = V0 = VB = 8.29 м/с:

С2 = VB = 8.29 м/с.


К-3 Вариант 18

авр

А

aA Cv

авр

ac

ацс

Eoa aцс C

aB

Woa


aB О В

Y

aB


X


Дано: ОА=10 АВ=10 АС=5 Woa =2 EOA =6

Найти: Ускорения во всех точках

Va=Woa*OA=20

Va=Wao*Acv=Wab*AB*sin45

Wab=Va/Cva=4/21/2

Vb=Wab*BCv=Wab*AB*cos45=20

Vc=Wab*CCv=21/2 2*BC/2ctg45=521/2 /2

aA bp = Eoa *OA=60

aA цс =WOA 2 *OA=40

aB цс = WOA 2 *AB=80

aB= aA bp +aA цс +aAB ЦС +aAB bp

X: 21/2 /2*aB= aA цс +aAB BP

Y: 21/2 /2*aB= aA BP +aAB ЦС

aAB BP =========== ==MOI===\KOI0-U=140-40=100

EAB =100/10=10

aB= aA вp +aA цс +aAC ЦС +aAC вp

aAC вp = EAB *АВ=50

aAC ЦС = W 2 *АС=40

X: 21/2 /2*ac= aA цс +aAB BP

Y: 21/2 /2*ac= aA BP +aAB ЦС

aC =( acx 2 +acy 2 )1/2

«Определение скорости и ускорения точки по заданным уравнениям ее движения».

Задание: По заданным уравнениям движения точки М установить вид ее траектории и

для момента времени t = t1 (c) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а так же радиус кривизны траектории.

Исходные данные:


Решение:

Для нахождения траектории точки, возведем в квадрат и приравняем левые части уравнений движения, предварительно выделив из них cos и sin соответственно, в результате получим:

- траектория точки в координатной форме.

Траектория представляет из себя окружность радиуса r=3 см.

Найдем проекции скорости и ускорения на оси координат дифференцируя по времени уравнения движения:

По найденным проекциям определяются модуль скорости и модуль ускорения точки:

Найдем модуль касательного ускорения точки по формуле:

-выражает проекцию ускорения точки на направление ее скорости. Знак «+» при означает, что движение точки ускоренное, направления и совпадают, знак «-» значит, что движение замедленное.

Модуль нормального ускорения точки: ; Т.к. радиус кривизны известен, но в качестве проверки применим другую формулу для нахождения модуля нормального ускорения:

Когда найдено нормальное ускорение, радиус кривизны траектории в рассматриваемой точке определяется из выражения:

Результаты вычислений занесем в таблицу (для момента времени t = t1 = 1 c):

Координаты (см) Скорость (см/с) Ускорение (см/с2 ) кривизны (см)
x y Vx Vy V Wx Wy W Wn
2.5 5.6 -5.4 3.2 6.3 -12 -8.3 14.6 5.5 13.5 2.922

Найденный радиус кривизны совпадает с определенным из уравнения траектории точки.

На рисунке показано положение точки М в заданный момент времени

Дополнительное задание. Определение скорости и ускорения точки при ее движении по пространственной траектории. Для этого к двум уравнениям движения добавляется 3-е уравнение.

Исходные данные:


Решение:

Определим пространственную траекторию точки в координатной форме:

- траектория точки в координатной форме.

Найдем проекции скорости и ускорения на оси координат дифференцируя по времени уравнения движения:

По найденным проекциям определяются модуль скорости и модуль ускорения точки:

Найдем модуль касательного ускорения точки по формуле:

-выражает проекцию ускорения точки на направление ее скорости. Знак «+» при означает, что движение точки ускоренное, направления и совпадают, знак «-» значит, что движение замедленное.

Модуль нормального ускорения точки: ; Т.к. радиус кривизны не известен, применим другую формулу для нахождения модуля нормального ускорения:

Когда найдено нормальное ускорение, радиус кривизны траектории в рассматриваемой точке определяется из выражения:

Результаты вычислений занесем в таблицу (для момента времени t = t1 = 1 c):

Координаты (см) Скорость (см/с) Ускорение (см/с2 ) кривизны (см)
x y z Vx Vy Vz V Wx Wy Wz W Wn
2.5 5.6 3.5 -5.4 3.2 3.5 7.2 -12 -8.3 0 14.6 5.3 15.5 3.6

«Определение реакций опор твердого тела».

Задание: Найти реакции опор конструкции.


Дано:

Q = 6, кН

G = 2, кН

a = 60, см

b = 40, см

c = 60, см

Определить:

Реакции опор конструкции.

Решение:

К раме ABCD приложены сила тяжести , сила , реакция стержня DC и реакции опор A и B. Реакция шарового шарнира А определяется тремя составляющими: , а реакция петли В двумя: .

Из этих сил – шесть неизвестных. Для их определения можно составить 6 уравнений равновесия.

Уравнения моментов сил относительно координатных осей:

Уравнения проекций сил на оси координат:

Из этих уравнений находим: решая уравнения, находим неизвестные реакции.

Результаты вычислений заносим в таблицу:

Силы, кН
S XA YA ZA XB ZB
1.15 -6.57 0.57 -1 -12.57 2

Проверка:

Проверка показала, что реакции опор твердого тела найдены правильно.

В 18. Д – 1.

Дано: VA = 0, a = 30°, f = 0,1, ℓ = 2 м, d = 3 м. Найти: h и t.

Решение: Рассмотрим движение камня на участке АВ. На него действуют силы тяжести G, нормальная реакция N и сила трения F.Составляем дифференциальное уравнение движения в проекции на ось X1 : = G×sina - F , (F = f×N = fG×cosa) Þ= g×sina - fg×cosa,

Дважды интегрируя уравнение, получаем:

= g×(sina - f×cosa)×t + C1 , x1 = g×(sina - f×cosa)×t2 /2 + C1 t + C2 ,

По начальным условиям (при t = 0 x10 = 0 и = VA = 0) находим С1 и С2 : C1 = 0 , C2 = 0,

Для определения VB и t используем условия: в т.B (при t = t) , x1 = ℓ , = VB . Решая систему уравнений находим:

x1 = ℓ = g×(sina - f×cosa)×t2 /2 Þ 2 = 9,81×(sin30° - 0,1×cos30°)×t2 /2 , Þt = 0,99 c ,

= VB = g×(sina - f×cosa)×t VB = 9,81×(sin30° - 0,1×cos30°)×0,99 = 4,03 м/с ,

Рассмотрим движение камня на участке ВС.На него действует только сила тяжести G. Составляем дифференциальные уравнения движения

в проекции на оси X , Y : = 0 , = G ,

Дважды интегрируем уравнения: = С3 , = gt + C4 ,

x = C3 t + C5 , y = gt2 /2 + C4 t + C6 ,

Для определения С3 , C4 , C5 , C6 , используем начальные условия (при t = 0): x0 = 0 , y0 = 0 , = VB ×cosa , = VB ×sina ,

Отсюда находим : = С3 , ÞC3 = VB ×cosa , = C4 , ÞC4 = VB ×sina

x0 = C5 , ÞC5 = 0 , y0 = C6 , ÞC6 = 0

Получаем уравнения : = VB ×cosa , = gt + VB ×sina

x = VB ×cosa×t , y = gt2 /2 + VB ×sina×t

Исключаем параметр t : y = gx2 + x×tga ,

2V2 B ×cos2 a

В точке С x = d = 3 м , у = h. Подставляя в уравнение VB и d , находим h: h = 9,81×32 + 3×tg30° = 5,36 м ,

2×4,032 ×cos2 30°

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита09:17:56 02 ноября 2021
.
.09:17:55 02 ноября 2021
.
.09:17:54 02 ноября 2021
.
.09:17:54 02 ноября 2021
.
.09:17:54 02 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Контрольная работа: Интегрирование уравнений движения материальной точки, находящейся под действием переменных сил

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(288261)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте