Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Побудова зображень предметів на площині

Название: Побудова зображень предметів на площині
Раздел: Рефераты по математике
Тип: реферат Добавлен 11:26:55 11 ноября 2010 Похожие работы
Просмотров: 1935 Комментариев: 18 Оценило: 7 человек Средний балл: 4.1 Оценка: 4     Скачать

Житомирський Військовий Інститут

Національного Авіаційного Уніврситету

Реферат

на тему:

Побудова зображень предметів на площині

Житомир 2010


Нарисна геометрія – наука, яка вивчає просторові форми та способи зображення їх на площині.

Основною задачею нарисної геометрії є вивчення методів побудови зображень просторових форм та в розробці способів рішення просторових задач за допомогою зображень.

Предмет, якій зображують називають оригіналом або моделлю. Креслення повинно містити геометричну інформацію про форму та розміри оригіналу. До такого креслення висуваються слідуючи основні вимоги:

– наочність, тобто давати просторове уявлення про модель;

– простота з точки зору графічного виконання;

– точність – графічні операції, які виконуються на кресленні, повинні давати точні рішення.

Для побудови зображень предметів на площині користуються методом проекціювання. Тому наступне питання - метод проекцій.


1. Сутність методу проекціювання

Отже, проекція - це зображення предмета, "відкинуте" на площину за допомогою променів. Спроекціювати предмет — це означає зобразити його на площині (рис.1).

Залежно від положення проекціюючих променівпроекції поділяють на центральні та паралельні.

Рис. 1

Ідею центрального проекціювання видно з рис.2. Точка S, з якої виходять проекціюючі промені, називається центром проекціювання. Площина π1 на яку проекціюється предмет, називається площиною проекцій. Площина π1 і точка S становлять апарат центральної проекції. Щоб спроекціювати трикутник, треба з центра проекцій Sчерез усі його вершини провести проекціюючі промені до перетину з площиною проекцій π1. Одержимо точки А1 В1 С1 , які називаються центральними проекціями вершин А, В, С на площину π1 , а трикутник А1 В1 С1 - центральною проекцією трикутника ABC.


Метод паралельного проекціювання розглянемо за допомогою рис. 3. Як і в попередньому випадку, вибирають площину проекцій π1 . Замість центра проекцій Sзадають напрям проекціювання s, тобто вважають, що центр проекцій Sвіддалений у нескінченність. Тому проекціюючі промені паралельні між собою. Площина π1 і напрям sстановлять апарат паралельної проекції. Щоб спроекціювати трикутник ABCна площину π1 , через вершини А, В, С проводять проекціюючі промені паралельно напряму проекціювання s. Внаслідок перетину цих променів з площиною π1 утворюється трикутник А1 В1 С1 , який являє собою паралельну проекцію трикутника ABC.


Рис. 5

Паралельні проекції поділяють на прямокутні і косокутні. Якщо проекціюючі промені перпендикулярні до площини проекцій (рис. 4), то таке проекціювання називають прямокутним, а проекції, які при цьому одержують — прямокутними, або ортогональними. Якщо ж кут нахилу променів не дорівнює 90°, то такі паралельні проекції називаються косокутними. У кресленні користуються прямокутними проекціями.

Ортогональне проекціювання має ряд переваг перед центральним та косокутним паралельним проекціюванням:

– простоту геометричних побудов ортогональних проекцій предметів;

– зберігання на проекціях, при певних умовах, форми та величини лінійних та кутових розмірів проекціюючих предметів.

2. Побудова за заданими координатами епюрів прямих, взаємного положення прямих та прямих і точок.

Розглянемо просторову модель координатної площини проекцій. Для визначення положення геометричної фігури в просторі і виявлення її форми по ортогональних проекціях найбільш зручною є декартова система координат. Декартова система координат складається з трьох взаємно перпендикулярних площин.

π1 – горизонтальна площина проекцій;

π2 – фронтальна площина проекцій;

π3 – профільна площина проекцій.

Лінії перетину площин проекцій утворюють осі координат: X - вісь абсцис, Y - вісь ординат, Z - вісь аплікат, а точка перетину координатних осей O береться за початок координат.


π1 – горизонтальна площина проекцій; π2 – фронтальна площина проекцій;

Площини проекцій перетинаються по вісі координат Ох . Обертанням навколо вісі Ох площину π1 суміщають з площиною π2 . Отримаємо комплексне креслення

Схему побудови зворотного ортогонального креслення розвинув Гаспар Монж – знаменитий французький учений. По схемі Монжа оригінал (наприклад точка) проекціюється ортогонально на дві взаємно перпендикулярні площини проекції π1 - горизонтальну і π2 - фронтальну площини проекцій.

Лінія зв'язку - це пряма, що з’єднує дві проекції точки на комплексному кресленні і перпендикулярна осі проекцій.

У результаті ми отримали двохпроекційне комплексне креслення точки А.

Твердження: Дві прямокутні проекції точки повністю визначають її положення в просторі основних площин проекцій.

Тобто комплексне креслення або епюр Монжа (з фр. «креслення») – це зображення, яке отримуємо в результаті обертання площини проекцій π1 на кут 90° до суміщення π2 .

В кресленні ж при побудові зображень часто користуються трьома проекціями на три площини проекцій. Розглянемо, за якими законами це реалізується.

Просторова картина

Комплексне креслення


А 1 – горизонтальна та А 2 – фронтальна проекції точки А . Проекціюючі промені А А 1 та А А 2 перпендикулярні відповідним площинам проекцій. Точки перетину проекціюючої площини з віссю Ох позначена АХ . На комплексному кресленні горизонтальна А 1 та фронтальна А 2 проекції точки А з’єднуються вертикальною лінією проекційного зв’язку, яка ^ вісі Ох .


Для переходу до комплексного креслення просторову модель розрізають по вісі Оу та суміщають всі три площини проекцій в одну: π1 обертають навколо вісі Ох , π3 обертають навколо вісі О z до їх спів падання з π2 .Вісь Оу розпадається на дві вісі у 1 та у 3



Проекціюючі промені АА 1 , АА 2 та АА 3 проводять перпендикулярно відповідним площинам проекцій й отримують проекції точки А : горизонтальну А 1 , фронтальну А 2 та профільну А 3 . Точки перетину проекціюючих площин з відповідними осями позначені АХ , А Y , А Z .

На комплексному кресленні лінії проекційного Проекціюючі промені АА 1 , АА 2 та АА 3 проводять перпендикулярно відповідним площинам проекцій й отримують проекції точки А : горизонтальну А 1 , фронтальну А 2 та профільну А 3 . Точки перетину проекціюючих площин з відповідними осями позначені АХ , А Y , А Z .

На комплексному кресленні лінії проекційного зв’язку ^ осям координат. Лінія А1 А 2 ^Ох розташована вертикально, а А 2 А 3 ^О z – горизонтально. При побудові лінії проекційного зв’язку від А1 до А 3 необхідно зберігати рівність координатних відрізків по осі Оу : АХ А1 = А Z А 3

Для переходу до просторову модель розрізають по вісі Оу та суміщають всі три площини проекцій в одну: π1 обертають навколо вісіπ3 обертають навколо вісі О z до їх спів падання з π2 .Вісь Оу розпадається на дві вісі у 1 та у 3

Перпендикуляр АА1 називається горизонтально-проекціюючим, АА2 - фронтально-проекціюючим і АА3 - профільно-проекціюючим променем.


На комплексному кресленні чисельні значення координат відкладаються вздовж відповідних координатних осей. Кожна проекція точки визначається двома координатами: горизонтальна – ХА та Y А , фронтальна – ХА та Z А , профільна – Y А та Z А .


Горизонтально конкуруючі точки А та В лежать на одному горизонтально – проекціюючому промені, тому їх горизонтальні проекції співпадають. Точка В віща за точку А та розташована ближче до спостерігача, тому горизонтальна проекція В1 буде видимою.


Фронтально конкуруючі точки А та В відрізняються координатою у , лежать на одному фронтально – проекціюючому промені, тому їх фронтальні проекції співпадають. Ближче до спостерігача розташована точка В , тому її фронтальна проекція В2 буде видимою.

До сих пір ми розглядали проекції точки, а зараз розглянемо комплексне креслення лінії. Пряма в просторі безмежна. Обмежена частина прямої називається відрізком.

По розташуванню відносно площин проекцій прямі можуть бути загального та частинного положень.

Прямою загального положення є пряма, яка не паралельна жодній з площин проекцій.


Розглянемо схему побудови ортогонального креслення прямої лінії. Проекціювання прямої зводиться до побудови проекцій будь-яких двох її точок, так як дві точки повністю визначають положення прямої в просторі.

Наприклад візьмемо пряму mзагального положення (рис. 12), яка задана двома точками А і В.Побудуємо ортогональні проекції відрізку АВ на площинах π12 , π3 . З’єднаємо проекції точок А і В на кожній площині отримаємо проекцію відрізку АВ на всі три проекціюючі площини.

Комплексне креслення відрізку прямої АВ загального положення на всі три площини проекції наведено на рис. 13.



Положення прямої m в просторі визначають дві довільні точки А та В , які лежать на цій прямій. Пряма лінія m є заданою, якщо на комплексному кресленні побудувати проекції двох її точок А та В . Проекції прямої m проходять через пари відповідних проекцій точок: горизонтальна проекція прямої m 1 – через А1 та В1 ; фронтальна проекція прямої m 2 – через А2 та В2

Якщо відрізок АВ загального положення (рис. 14) продовжити в обидва боки від точок А і В, то в точках М і N він перетне площини проекцій π1 і π2 .

Рис. 14
Пряма, яка паралельна якій-небудь площині проекцій, не може мати сліду на тій площині, якій вона паралельна, так як вона з нею не перетинається.

Пряма частинного положення (або пряма рівня) – називається пряма, паралельна хоч би одній з площин проекцій.

Проекціюючими називаються прямі, перпендикулярні до однієї з площин проекцій, тобто паралельні двом іншим площинам.


Рис. 16


Слід прямої – це точка перетину прямої з відповідною площиною проекцій.Точка М — горизонтальний слід прямої АВ ,вона має аплікатуz М = 0, а точка N - фронтальний слід прямої АВ ,вона має аплікатуyN = 0.

Для побудови горизонтального сліду прямої АВ знайдемо на ній точку М з координатою z = 0, перетин фронтальної проекції прямої А 2 В 2 з віссю х визначає фронтальну проекцію сліду М 2 . Горизонтальна проекція сліду М1 належить горизонтальній проекції прямої.

Для побудови фронтального сліду прямої АВ знайдемо на ній точку N з координатою у = 0, перетин горизонтальної проекції прямої А 1 В 1 з віссю х визначає горизонтальну проекцію сліду N 1 . Фронтальна проекція сліду N 2 належить фронтальній проекції прямої.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
06:27:10 11 сентября 2021
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya10:13:40 25 августа 2019
.
.10:13:39 25 августа 2019
.
.10:13:38 25 августа 2019
.
.10:13:37 25 августа 2019

Смотреть все комментарии (18)
Работы, похожие на Реферат: Побудова зображень предметів на площині

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286178)
Комментарии (4151)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте