Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Математическая теория информации

Название: Математическая теория информации
Раздел: Рефераты по информатике
Тип: реферат Добавлен 09:16:48 15 августа 2009 Похожие работы
Просмотров: 179 Комментариев: 20 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать

МАТЕМАТИЧЕСКАЯ ТЕОРИЯ ИНФОРМАЦИИ

1. Количество информации, и ее мера

На вход системы передачи информации (СПИ) от источника информации подается совокупность сообщений, выбранных из ансамбля сообщений (рис. 1).

Помехи

x1 y1

x2 y2

……

xn yn

Рис. 1. Система передачи информации

Ансамбль сообщений – множество возможных сообщений с их вероятностными характеристиками – {Х, р(х)} . При этом: Х={х1 , х2 ,…, хm } – множество возможных сообщений источника; i = 1, 2,…, m , где m – объем алфавита; p(xi ) – вероятности появления сообщений, причем p(xi ) ³ 0 и поскольку вероятности сообщений представляют собой полную группу событий, то их суммарная вероятность равна единице

.

Каждое сообщение несет в себе определенное количество информации. Определим количество информации, содержащееся в сообщении xi , выбранном из ансамбля сообщений источника {Х, р(х)}. Одним из параметров, характеризующих данное сообщение, является вероятность его появления – p(xi ) , поэтому естественно предположить, что количество информации I(xi ) в сообщении xi является функцией p(xi ). Вероятность появления двух независимых сообщений x1 и x2 равна произведению вероятностей p(x1 ,x2 ) = p(x1 ).p(x2 ) , а содержащаяся в них информация должна обладать свойством аддитивности, т.е.:

I(x1 , x2 ) = I(x1 )+I(x2 ). (1)

Поэтому для оценки количества информации предложена логарифмическая мера:

. (2)

При этом наибольшее количество информации содержат наименее вероятные сообщения, а количество информации в сообщении о достоверном событии равно нулю. Т. к. все логарифмы пропорциональны, то выбор основания определяет единицу информации: loga x = logb x/logb a.

В зависимости от основания логарифма используют следующие единицы информации:

2 – [бит] (bynary digit – двоичная единица), используется при анализе ин-формационных процессов в ЭВМ и др. устройствах, функционирующих на основе двоичной системы счисления;

e – [нит] (natural digit – натуральная единица), используется в математических методах теории связи;

10 – [дит] (decimal digit – десятичная единица), используется при анализе процессов в приборах работающих с десятичной системой счисления.

Битом (двоичной единицей информации) – называется количество информации, которое снимает неопределенность в отношении наступления одного из двух равновероятных, независимых событий.

Среднее количество информации для всей совокупности сообщений можно получить путем усреднения по всем событиям:

. (3)

Количество информации, в сообщении, состоящем из n не равновероятных его элементов равно (эта мера предложена в 1948 г. К. Шенноном):

. (4)

Для случая независимых равновероятных событий количество информации определяется (эта мера предложена в 1928 г. Р. Хартли):

. (5)

2. Свойства количества информации

1. Количество информации в сообщении обратно – пропорционально вероятности появления данного сообщения.

2. Свойство аддитивности – суммарное количество информации двух источников равно сумме информации источников.

3. Для события с одним исходом количество информации равно нулю.

4. Количество информации в дискретном сообщении растет в зависимости от увеличения объема алфавита – m .

Пример 1. Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны: pi0 = pi1 = 1/2.

Количество информации равно:

I = n log m = 8 log2 2 = 8 бит .

Пример 2. Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны:

pi0 = 3/4; pi1 = 1/4.

Количество информации равно:

3. Энтропия информации

Энтропия – содержательность, мера неопределенности информации.

Энтропия – математическое ожидание H(x) случайной величины I(x) определенной на ансамбле {Х, р(х)} , т.е. она характеризует среднее значение количества информации, приходящееся на один символ.

. (6)


Определим максимальное значение энтропии Hmax (x) .Воспользуемся методом неопределенного множителя Лагранжа -l для отыскания условного экстремума функции [6]. Находим вспомогательную функцию:

(7)

Представим вспомогательную функцию F в виде:

. (8)

Найдем максимум этой функции

т. к.

.

Как видно из выражения, величина вероятности pi не зависит от i , а это может быть в случае, если все pi равны, т.е. p1 =p2 =…=pm =1/m .

При этом выражение для энтропии равновероятных, независимых элементов равно:

. (9)

Найдем энтропию системы двух альтернативных событий с вероятностями p1 и p2 . Энтропия равна


4. Свойства энтропии сообщений

1. Энтропия есть величина вещественная, ограниченная, не отрицательная, непрерывная на интервале 0 £ p £ 1 .

2. Энтропия максимальна для равновероятных событий.

3. Энтропия для детерминированных событий равна нулю.

4. Энтропия системы двух альтернативных событий изменяется от 0 до 1.

Энтропия численно совпадает со средним количеством информации но принципиально различны, так как:

H(x) – выражает среднюю неопределенность состояния источника и является его объективной характеристикой, она может быть вычислена априорно, т.е. до получения сообщения при наличии статистики сообщений.

I(x) – определяется апостериорно, т.е. после получения сообщения. С получением информации о состоянии системы энтропия снижается.

5. Избыточность сообщений

Одной из информационных характеристик источника дискретных сообщений является избыточность, которая определяет, какая доля максимально-возможной энтропии не используется источником

, (10)


где ? – коэффициент сжатия.

Избыточность приводит к увеличению времени передачи сообщений, уменьшению скорости передачи информации, излишней загрузки канала, вместе с тем, избыточность необходима для обеспечения достоверности передаваемых данных, т.е. надежности СПД, повышения помехоустойчивости. При этом, применяя специальные коды, использующие избыточность в передаваемых сообщениях, можно обнаружить и исправить ошибки.

Пример 1. Вычислить энтропию источника, выдающего два символа 0 и 1 с вероятностями p(0) = p(1) = 1/m и определить его избыточность.

Решение: Энтропия для случая независимых, равновероятных элементов равна: H(x) = log2 m = log2 2 = 1 [дв. ед/симв.]

При этом H(x) = Hmax (x) и избыточность равна R = 0 .

Пример 2. Вычислить энтропию источника независимых сообщений, выдающего два символа 0 и 1 с вероятностями p(0) = 3/4, p(1) = 1/4 .

Решение: Энтропия для случая независимых, не равновероятных элементов равна:

При этом избыточность равна R = 1–0,815=0,18

Пример 3. Определить количество информации и энтропию сообщения из пяти букв, если число букв в алфавите равно 32 и все сообщения равновероятные.

Решение: Общее число пятибуквенных сообщений равно: N = mn = 32

Энтропия для равновероятных сообщений равна:

H = I = – log 2 1/ N = log 2 325 = 5 log 2 32 = 25 бит./симв.

Литература

1 Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.

2 Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.

3 Кловский Д.Д. Теория передачи сигналов. – М.: Связь, 1984.

4 Кудряшов Б.Д. Теория информации. Учебник для вузов Изд-во ПИТЕР, 2008. – 320 с.

5 Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.

6 Асанов М.О., Баранский В.А., Расин В.В. Дискретная математика: графы матроиды, алгоритмы. – Ижевск: НИЦ «РХД», 2001, 288 стр.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Делаю рефераты, курсовые, контрольные, дипломные на заказ. Звоните или пишите вотсап, телеграмм, вайбер 89675558705 Виктория.
03:53:05 18 октября 2021
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
10:51:02 11 сентября 2021
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya13:48:42 25 августа 2019
.
.13:48:41 25 августа 2019
.
.13:48:41 25 августа 2019

Смотреть все комментарии (20)
Работы, похожие на Реферат: Математическая теория информации

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286338)
Комментарии (4153)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте