Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Синтезування логічної структури пристрою у базісі АБО–НІ

Название: Синтезування логічної структури пристрою у базісі АБО–НІ
Раздел: Рефераты по информатике, программированию
Тип: курсовая работа Добавлен 22:08:33 10 июля 2009 Похожие работы
Просмотров: 125 Комментариев: 21 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать
КУРСОВА РОБОТА
з дисциплін и« Арифметико-логічні основи ЕОМ»

«Синтезування логічної структури пристрою у базісі АБО–НІ»


Пояснювальна записка

Зміст

1. Вступ

2. Мінімізація логічної функції методом Квайна

3. Мінімізація логічної функції методом карт Карно (Вейча)

4. Синтез структури у заданому базисі

5. Висновок

6. Список літератури

Вступ

В сучасному світі такий пристрій як ЕОМ застосовується практично всюди, в науці, в навчанні, в економіці, у військовій галузі і т.д. Це зумовлено тим що ЕОМ може обробляти інформацію дуже і дуже швидко.

Цифрові ЕОМ працюють з інформацією, представленою в дискретній формі у вигляді загальноприйнятої для запису та читання символіки набором цифр, букв та знаків будь-якого установленого алфавіту, який має кінцеве число символів.

Основна мета курсового проекту – надбання практичних та закріплення теоретичних навичок в розробці апаратних засобів логічних пристроїв різноманітного призначення.

В завданні требасинтезувати логічну структуру пристрою у базісі АБО-НІ.

Для формального опису цифрового автомату (блоки ЕОМ представляють собою цифрові автомати) використовують апарат алгебри логіки). У загальному випадку логічні вирази є функціями логічних змінних A, B, C,… що, як i їх логічні змінні, можуть приймати тільки два значення 0 або 1. Структурна схема логічного пристрою може бути побудована безпосередньо за канонічною формою (ДКНФ) функції, що реалізується. Недоліком такого методу побудування структурних схем, що забезпечують правильне функціонування пристрою, є те, що отримані схеми, як правило, виходять невиправдано складними, потребують великої кількості логічних елементів i, відповідно, мають низьку економічність i надійність. У багатьох випадках вдається так спростити логічний вираз, не порушуючи функції, що відповідна структурна схема виходить істотно простішою. Методи такого спрощення функції називають методами мінімізації логічних функцій.


1. Перший етап

1.1 Мінімізація логічних функцій методом Квайна

Метод Квайна відноситься до числа таких методів мінімізації функцій алгебри логіки, які дозволяють зображати функції в КНФ з мінімальним числом членів i мінімальним числом літер у членах. Цей метод має два етапи перетворення функції: на першому етапі здійснюється перехід від канонічної форми (ДКНФ) до, так званої, СКОРОЧЕНОЇ ФОРМИ, а на другому етапі – перехід від скороченої форми логічного виразу до МIНIМАЛЬНОЇ ФОРМИ.

1.2 Нехай функція задана таблицею істинності (табл. 1)

Таблиця 1

A 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1
B 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0
C 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
D 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
F (A, B, C, D) 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1

ДКНФ даної функції:

(1)

Метод Квайна працює лише для ДДНФ. Щоб отримати її потрібно зробити інверсію даної функції:

(2)


Перехід до скороченої форми складається з послідовного використання двох операцій: операції склеювання та операції поглинання.

Вираз, який отримали, є скороченою формою логічного виразу заданої функції, а його члени – прості імпліканти функції.

(3)

2. Другий етап

Перехід від скороченої форми до мінімальної здійснюється за допомогою iмплiкантної матриці (табл. 2). У стовпчики iмплiкантної матриці записуються члени ДДНФ заданої функції, а в рядки – прості імпліканти функції, тобто члени скороченої форми логічного виразу функції. У матриці помічаються (наприклад, хрестиками) стовпчики членів ДДНФ, що поглинаються окремими простими iмплiкантами.

Таблиця2

(4)

Мiнiмальна кон'юнктивна нормальна форма (МКНФ) заданої функції:

(5)

2.1 Мінімізація логічної функції методом карт Карно (Вейча)

Метод Квайна має чітко сформульовані правила проведення окремих операцій, завдяки чому він може бути використаний для мінімізації функцій з використанням ЕОМ в тих випадках, коли функція, мінімізується, достатньо складна (має велику кількість аргументів i канонічна форма має велике число членів). Однак для мінімізації функції ручним способом (без використання ЕОМ) цей метод є трудомістким. Це пов'язано з необхідністю попарного порівняння всіх членів виразу для виявлення членів, що склеюються. Метод мінімізації функцій за допомогою карт Карно (Вейча) забезпечує простоту отримання результату. Він використовується для мінімізації відносно нескладних функцій (з числом аргументів не більше 5) ручним способом. Карта Карно (Вейча) – це таблиця істинності визначеної форми i представляє собою прямокутник, поділений на 2n клітин, де n – число змінних. Кожна клітина відповідає визначеному набору значень аргументів. Значення аргументів складають координати відповідних їм рядків i стовпчиків.

2.2 Мінімізація логічних функцій методом карт Карно (Вейча)

Перший етап – заповнення карт Карно (Вейча). У відповідні клітини записують значення функції, що відповідає даному набору (табл3).

Таблиця 3

Другий етап – наведення контурів. На карті Карно (Вейча) наводять контури, що об'єднують «0».

Третій етап – запис мінімізованої логічної функції у вигляді МКНФ:

(6)


3. Третій етап

3.1 Синтез логічної структури у заданому базисі

За реалізації на елементах АБО-НI необхідно виконати подвійну інверсію над отриманою МКНФ функції i перетворити за теоремою де-МОРГАНА інверсію кон'юнкції в диз'юнкцію інверсій. Наприклад, МКНФ функції має вираз:

(7)

Структурна схема, що вiдповiдає цьому виразові, зображена на рисунку 1. 1

Рисунок 1.1

Для отримання інверсних значень змінних використані двовходовi елементи АБО-НI.

Структурна схема, що вiдповiдає даному завданню зображена на рисунку 1.2.


Рисунок 1.2

Висновок

На початку виконання роботи, була записана логічна функція, задана таблицею істинності.

Зробивши інверсію, за допомогою операції «склеювання» та таблиці імплікантів була мінімізована логічна функція (КНФ) методом Квайна. Для перевірки результатів мінімізації методом Квайна, був використаний метод карт Карно (Вейча), який виявився найбільш простим. Отриману функцію синтезували в базисі АБО-НI. У підсумку була отримана структурна схема.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита13:19:53 02 ноября 2021
.
.13:19:51 02 ноября 2021
.
.13:19:51 02 ноября 2021
.
.13:19:50 02 ноября 2021
.
.13:19:50 02 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Курсовая работа: Синтезування логічної структури пристрою у базісі АБО–НІ

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(288194)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте