Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Обобщенные оптимальные и квазиоптимальные дискриминаторы. Дискриминационная характеристика

Название: Обобщенные оптимальные и квазиоптимальные дискриминаторы. Дискриминационная характеристика
Раздел: Рефераты по коммуникации и связи
Тип: реферат Добавлен 05:14:23 26 января 2009 Похожие работы
Просмотров: 396 Комментариев: 19 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра ЭТТ

РЕФЕРАТ

на тему:

« Обобщенные оптимальные и квазиоптимальные дискриминаторы. Дискриминационная характеристика»

МИНСК, 2008

Обобщенный оптимальный дискриминатор

Согласно уравнению оптимальной оценки сигнал ошибки на выходе оптимального дискриминатора, несущий информацию о величине и знаке рассогласования, должен вычисляться (формироваться) какпроизводная от отношения правдоподобия (или его логарифма) по из­меряемому параметру. Учитывая, что с точки зрения зависимости от измеряемого параметра a логарифм отношения правдоподобия и квадрат модуля обобщенного корреляционного интеграла S ( t , a) эквивалентны, дискриминатор сигнала ошибки можно представить уст­ройством, вычисляющим производную от квадрата модуля обобщенного корреляционного интеграла по измеряемому параметру:

где ,

- импульсная характеристика узкополосного фильтра (радиоинтегратора) на некоторой промежуточной частоте;

- опорный сигнал, смещенный относительно частоты принятого на ве­личину промежуточной частоты;

- принятый сигнал.

Все многообразие схем дискриминаторов сигнала ошибки измерителей дальности, скорости, наклона и кривизны волнового фронта и других параметров (сумма и разность времен запаздывания, сумма и разность доплеровских сдвигов частоты) может быть сведено к трем обобщенным схемам:

- оптимального дискриминатора;

- квазиоптимального дискриминатора с двумя взаимно расстроенными каналами, суммарно-разностной обработкой и перемножением;

- квазиоптимального дискриминатора с двумя взаимно расстроенными каналами и вычитанием.

Сигнал ошибки на Выходе оптимального дискриминатора можно представить в виде скалярного произведения обобщенного корреляционного интеграла и его производной по измеряемому параметру:

где - производная обобщенного корреляционного интеграла по измеряемому параметру.

Таким образом, обобщенный оптимальный дискриминатор состоит из двух каналов (рис. 1). На выходе первого канала формирует­ся колебание, комплексная амплитуде которого определяется обобщенным корреляционным интегралом (по существу это схема обработ­ки оптимального обнаружителя). На выходе второго канала формиру­ется колебание, комплексная амплитуда которого определяется про­изводной обобщенного корреляционного интеграла по измеряемому параметру. Для этого в этом канале в качестве опорного использу­ем сигнал, закон модуляций которого определяется производной от закона модуляции опорного сигнала первого канала по измеряемому параметру. Скалярное перемножение колебаний, формируемых на вы­ходе двух каналов оптимального дискриминатора, осуществляется с помощью фазового детектора.

Сигнал ошибки, несущий информацию о величине и знаке рассогласования, поступает на формирующий фильтр, на выходе которого формируется управляющее воздействие, пропорциональное изме­ренному значению параметра a. Под влиянием управляющего воздействия формируются опорные сигналы U г( t , a ) и U г`( t , a ) , поступающие на входы двух каналов оптимального дискриминатора, тем самым в следящем измерителе замыкается отрицательная обрат­ная связь, благодаря чему в установившемся режиме минимизирует­ся рассогласование Daц, т.е. ошибка измерения.

Обобщенные квазиоптимальные дискриминаторы

Заменяя приближенно корреляционный интеграл и его производную суммой и разностью обобщенных корреляционных интегралов со взаимной расстройкой ± d a по измеряемому параметру,

Рис. 1. Схема обобщённого оптимального дискриминатора сигнала ошибки

Рис. 2 Схема обобщенного квазиоптимального дискриминаторас двумя взаимно расстроенными каналами, суммарно-разностной обработкой и перемножением

приходим к схеме обобщенного квазиоптимального дискриминатора с двумя взаимно расстроенными каналами, суммарно-разностной обра­боткой и перемножением (рис. 2). Алгоритм формирования сигна­ла ошибки в этой схеме определяется выражением

В этой схеме, по сравнению с оптимальной, проще решается за­дача формирования опорных сигналов: вместо сложно формируемой пары опорных сигналов Uг(t,a) и Uг`(t,a) здесь исполь­зуется пара сравнительно просто формируемых опорных сигналов со взаимной расстройкой Uг(t, a±da).

Заменяя приближение производную от квадрата модуля обобщенного корреляционного интеграла по измеряемому параметру его ко­нечной разностью

приходим к схеме обобщенного квазиоптимального дискриминатора с двумя взаимно-расстроенными каналами и вычитанием (рис. 3). В этой схеме, по сравнению с предыдущей, отсутствует суммарно-разностная обработка и скалярное перемножение колебаний с выхо­да двух взаимно-расстроенных каналов. Вместо этого используется их детектирование и вычитание, что с точки зрения технической реализации несколько проще.

Заметим, что несмотря на существенное внешнее различиесхем квазиоптимальных дискриминаторов, с принципиальной точки зрения они эквивалентны:

поскольку

Рис. 3 Схема обобщенного квазиоптимального дискриминатора двумя взаимно расстроенными каналами и вычитанием

Рис. 4. Функция рассогласования по измеряемому параметру

Рис. 5 Плотность вероятности «шумов» объекта наблюдения (цели)

Оба варианта построения квазиоптимальных дискриминаторов находят широкое применение в радиотехнических системах.


Дискриминационная характеристика

Сигнал ошибки Д(t, Daц) можно представить как сумму сред­него значения Д( t , D a ц) и некоторой центрированной случайной составляющей x ( t , D a ц) :

Первое слагаемое представляет так называемую дискриминаци­онную характеристику, определяющую зависимость среднего значения сигнала ошибки от рассогласования. Второе слагаемое связано с так называемой флуктуационной характеристикой S x (0, D a ц), определя­ющей зависимость спектральной плотности сигнала ошибки от рассог­ласования.

Для последующего анализа указанных (дискриминационной и флуктуационной) характеристик дискриминатора определим взаимную корреляционную функцию колебаний на выходе двух каналов, форми­рующих корреляционные интегралы с расстройкой по измеряемому па­раметру?

где - удвоенная мощность накопленного шума;

- нормированная корреляционная функция накопленного шума;

- нормированная корреляционная функция когерентно накопленного сигнала;

- отношение сигнал-шум по мощности после когерент­ного накопления сигнала)

- функция рассогласования с гауссовой аппроксимацией, характеризующая критич­ность корреляционной обработки к расстройке опорного сигнала по измеряемому параметру:

D a - разрешающая способность по измеряемому параметру a, определяющая аффективную ширину функции рассогла­сования.

Заметим, что аппроксимация функции рассогласования гауссовой кривой для произвольного измеряемого параметра способствует ана­литичности решения последующих задач и сохранение основных за­кономерностей, лежащих в основе измерений.

Будем рассматривать не частный случай "точечного" объекта наблюдения (цели), а общий случай "протяженного" объекта наблюде­ния (цели), когда диапазон блужданий энергетического центра от­ражения,излучения, рассеяния, распространения радиоволн по из­меряемой координате D a ц , вызванных "шумами" цели («шум даль­ности», «доплеровский шум», «угловой шум»), является не пренебре­жимо малым, а становится соизмеримым с разрешающей способностью по измеряемой координате (параметру) D a . Будем полагать "шумы" цели нормально распределенными, а плотность вероятности измеряемой координате (параметра) цели будем описывать гауссовой кривой;

где a ц0 - центр блуждания параметра aц ;

s a - среднее квадратичное значение блужданий параметра aц ;

- эффективный диапазон блужданий параметра aц ;

Усредненное по "шумам" цели произведение функций рассогласо­вания, входящее в выражение для Rs ( t 1 , t 2 ,1 a 1 , a 2 ), принимает следующий вид:

где - радикал, определяющийся соотношени­ем диапазона блужданий Daц р разрешающей способности Da по измеряемому параметру:

- каноническая форма функции рассогласования.

При этом усредненная по "шумам" цели взаимная корреляцион­ная функция колебаний на выходах расстроенных по измеряемому параметру каналов

В частности, средний квадрат обобщенного корреляционного интеграла, следующий из последнего выражения при t 1 = t 2 = t и a 1 = a 2 = a имеет вид

На рис. 2.12.8. показана зависимость его нормированного по шуму значения от рассогласования :

Из рисунка следует, что под действием "шумов" цели происхо­дит "размывание" функции рассогласования,т.е. ее расширение в R раз, а также уменьшение усредненного по "шумам" цели произведения функций рассогласования в R раз.

Полученное выражение для среднего квадрата модуля обобщенного корреляционного интеграла. Позволяет определить дискримина­ционную характеристику, т.е. зависимость среднего значения сиг­нала ошибки на выходе дискриминатора от рассогласования (рис. 6):

а также крутизну дискриминационной характеристики

Рис. 6. Зависимость нормированной по шуму мощности выходного колебания коррелятора от рассогласования с учетом «шумов» цели

Рис. 7. Вид дискриминационной характеристики


где

Таким образом, крутизна дискриминационной характеристики макси­мальна (по модулю) для «точечного» объекта наблюдения

и уменьшается по мере увеличения относительной "протяженности" цели Daц / Da. Например, для "умеренно протяженной" цели (Daц / Da) крутизна дискриминационной характеристики уменьша­ется из-за "шумов" цели по сравнению с максимальной в раз, т.е., примерно в 5 раз.

Заметим, что в кваэиоптимальных дискриминаторах существует оптимальное значение расстройки (da)опт , соответствующее максимальной крутизне дискриминационной характеристики. Действи­тельно, дискриминационная характеристика в этом случае согласно алгоритму формирования сигнала ошибки пропорцио­нальна разности квадратов смещенных функций рассогласования

а крутизна дискриминационной характеристики оказывается зависи­мой от расстройки:

Исследуя эту зависимость на экстремум при гауссовой аппрок­симации функции рассогласования, можно найти оптимальное значение расстройки (da)опт . при которой крутизна дискриминационной характеристики квазиоптимальных дискриминаторов максимальна:


ЛИТЕРАТУРА

1. Охрименко А.Е. Основы извлечения, обработки и передачи информации. (В 6 частях). Минск, БГУИР, 2004.

2. Девятков Н.Д., Голант М.Б., Реброва Т.Б.. Радиоэлектроника и медицина. –Мн. – Радиоэлектроника, 2002.

3. Медицинская техника, М., Медицина 1996-2000 г.

4. Сиверс А.П. Проектирование радиоприемных устройств, М., Радио и связь, 2006.

5. Чердынцев В.В. Радиотехнические системы. – Мн.: Высшая школа, 2002.

6. Радиотехника и электроника. Межведомств. темат. научн. сборник. Вып. 22, Минск, БГУИР, 2004.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита17:23:58 02 ноября 2021
.
.17:23:56 02 ноября 2021
.
.17:23:56 02 ноября 2021
.
.17:23:55 02 ноября 2021
.
.17:23:54 02 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Реферат: Обобщенные оптимальные и квазиоптимальные дискриминаторы. Дискриминационная характеристика

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294100)
Комментарии (4230)
Copyright © 2005-2022 HEKIMA.RU [email protected] реклама на сайте