Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Релаксорные сегнетоэлектрики в системе твердых растворов

Название: Релаксорные сегнетоэлектрики в системе твердых растворов
Раздел: Рефераты по физике
Тип: реферат Добавлен 23:01:14 30 июня 2010 Похожие работы
Просмотров: 67 Комментариев: 19 Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать

Релаксорные сегнетоэлектрики в системе твёрдых растворов

(1-x)KNbO3 – xBiZn2/3Nb1/3O3


Оксидные релаксорные сегнетоэлектрики (релаксоры) со структурой перовскита составляют особый класс сегнетоактивных материалов, которые привлекают к себе внимание как с точки зрения выявления природы релаксорного состояния, так и возможности их практического использования. Большинство известных материалов релаксорных сегнетоэлектриков получается на основе токсичных свинец содержащих соединений (см., например [1]). В последнее время ведётся поиск релаксоров среди сложных оксидов, не содержащих экологически вредного свинца.

Целью данной работы является определение пределов существования твёрдых растворов со структурой перовскита в системе (1-x)KNbO3 – xBiZn2/3Nb1/3O3 ((1-x)KN-xBZN) и установление закономерностей температурно-частотных зависимостей характеристик диэлектрического отклика.

Исходной шихтой для синтеза твёрдых растворов (1-x)KN-xBZN являлась смесь порошков предварительно синтезированного соединения KN и оксидов Bi2O3, ZnO и Nb2O5 марки ос. ч.. Синтез KN проводился из смеси K2CO3 и Nb2O5 в условиях, обеспечивающих получение соединения с наиболее высокой степенью стехиометрии. Образцы керамики системы (1-x)KN-xBZN получались как по обычной керамической технологии, так и с использованием техники высоких давлений и температур. Рентгенофазовый анализ проводился на автоматизированном дифрактометре ДРОН-3 в CuKa излучении. Характеристики комплексно импеданса (Z*) измерялись с использованием измерителя иммитанса Е7-20 в интервалах 100-1000 К и 25-106 Гц. По измеренным характеристикам Z* определялись действительная и мнимая составляющие комплексной диэлектрической проницаемости (e*), комплексного электрического модуля (М*) и комплексной удельной электропроводности (s*) [2].

Рентгенофазовый анализ показал, что в системе (1-x)KN-xBZN в области составов х<0.5 образуются твёрдые растворы со структурой перовскита. При х>0.5 система двухфазна. Для составов с х<0.3 подобно как для чистого KN при комнатной температуре выявляется ромбический характер искажения кристаллической решётки. Степень такого искажения быстро уменьшается с увеличением содержания BZN. Установлено, что приведённый параметр перовскитной элементарной ячейки линейно возрастает с увеличением х.

Исследования диэлектрического отклика показали, что твёрдые растворы в области составов х<0.1 и 0.1<х£0.4 имеют качественно различный характер температурной зависимости действительной ε¢ и мнимой ε¢¢ составляющих диэлектрической проницаемости. Для составов с х<0.1 температурное поведение ε¢ и ε¢¢ примерно такое же как для керамики KN. Установлено, что в поведении диэлектрического отклика для составов 0.1<х£0.4 в области низких температур проявляются особенности, которые выражаются в частотной дисперсии ε¢ и ε¢¢, характерной для релаксорных сегнетоэлектриков (рис. 1):

Рисунок 1 – Температурные зависимости ε¢ и ε¢¢ для составов х=0.2 (а, б) и х=0.4 (в, г)


Наблюдаемое низкотемпературное плечо на кривых ε¢(Т) и размытый максимум на кривых ε¢¢(Т) закономерно смещаются в сторону более высоких температур с увеличением частоты измерительного поля. Температурная область, в которой имеет место релаксорное поведение ε¢ и ε¢¢, смещается в сторону более низких температур с увеличением х. Показано, что температура максимума Тm¢¢ на кривых ε¢¢(Т) связана с соответствующей частотой (f) соотношением f=f0exp(-Ea/kT). Энергия активации Еа изменяется в пределах 0.41-0.46 эВ в зависимости от состава.

Установлен характер частотной зависимости составляющих электропроводности. На рисунке 2 для примера приведена частотная зависимость действительной компоненты удельной электропроводности (s¢) керамики с х=0.2 при различных температурах.

Из анализа приведённых зависимостей s¢ определена удельная электропроводность постоянного тока (sdc) и установлен характер её изменения с температурой. На кривых зависимости ln sdc от обратной температуры (рис. 3) выявляются два излома, которые могут быть связан с фазовыми переходами. Температуры наблюдаемых изломов для исследуемых составов керамики (1-x)KN-xBZN (0.2£х£0.4) слабо зависят от х. Керамика данных твёрдых растворов является высокоомным диэлектриком (при температурах ниже 400 К

sdc<10-10 Ом-1см-1).

Построены М¢¢–М¢ диаграммы, определяющие соотношение мнимой (М¢¢) и действительной (М¢) составляющих комплексного электрического модуля (М*=М¢+iМ¢¢). Установлено, что они имеют различный вид в области высоких и низких температур (рис. 4).

При высоких температурах, на указанных диаграммах выявляются области, соответствующие вкладам в диэлектрический отклик от объёма зёрен керамики и их границ. Из М¢¢–М¢ диаграмм определена обратная величина диэлектрической проницаемости зёрен керамики и показано, что её температурная зависимость выше некоторой температуры Т0 (температура перехода в парафазу) имеет линейный характер в соответствии с законом Кюри-Вейса (ε¢=ВС/Т-ТС). Из наблюдаемой линейной зависимости 1/ε¢(Т) оценена температура Кюри (ТС). Показано, что ТО для исследуемых составов керамики слабо зависит от х и лежит в области 650 К. Температура Кюри ТС быстро уменьшается с увеличением х. Так, при х=0.2 ТС≈450 К, а при х=0.4 – около 200 К.


Наблюдаемый характер соотношения мнимой и действительной составляющих комплексного электрического модуля в низкотемпературной области (рис. 4) показывает, что в керамике данных твёрдых растворов при низких температурах имеет место два механизма поляризации, связанных соответственно с кристаллической матрицей (зёрна керамики) и с релаксорной (кластерной) системой. Последняя из них характеризуется широким спектром времён релаксации.

Жидкокристаллические эластомеры имеют в своей структуре жесткие фрагменты и поэтому обладают ориентационным порядком. Для описания упругого поведения эластомеров при наличии ориентационного порядка вводим среднее значение микроскопического тензора Коши-Грина


, , (1)

где R – радиус-вектор, соединяющий два соседних узла сеточной структуры; – радиус-вектор в исходном недеформированном состоянии эластомера, – символ усреднения по деформированному состоянию, а – по недеформированному.

Величина , . Причем a – эффективная длина мономера, L = Na – контурная длина молекулы между ближайшими узлами сетки, – символ Кронекера, – тензорный параметр порядка в исходном состоянии (, где – единичный вектор вдоль оси мономера).

Рассматривая распространенный случай, когда в некотором промежуточном состоянии эластомер подвержен деформации, описываемой тензором кратности удлинений , получим

и , (2)

где – расстояние между ближайшими узлами сетки в промежуточном состоянии.

Учтем, что

, (3)

причем тензорная величина описывает сетку эластомера в промежуточном состоянии.

Тогда тензор деформации приобретает вид


(4)

С учетом несжимаемости нематического эластомера запишем его свободную энергию в рамках линейной теории как величину пропорциональную ,

, m – модуль сдвига.

Отсюда следует, что при переходе от промежуточного состояния к текущему (актуальному) состоянию путем охлаждения среды, происходит удлинение образца на величину ( и – продольная и поперечная компоненты тензора ).

Если же формирование эластомера происходит в монодоменном нематическом состоянии, а переход его в изотропное состояние с реализуется путем нагревания, то имеет место сокращение эластомера, характеризуемое величиной

. (5)

Зависящие от частоты вязко-упругие свойства среды определяются временными корреляционными функциями микроскопического тензора напряжений. Упомянутый тензор выражается через тензор ориентационного параметра порядка следующим образом:

, (6)


где характеризует степень удлиненности жесткого фрагмента молекулы, p – отношение длины фрагмента к его диаметру, – компоненты директора, b – величина, определяющая интенсивность взаимодействия в используемом потенциале среднего поля.

Временная корреляционная функция микроскопического тензора напряжений имеет вид

, (7)

где V – объем системы, – тензор релаксации напряжений.

Так как микроскопический тензор напряжений определяется через тензор , то вычисление функции сводится к вычислению временной корреляционной функции величины .

С учетом одноосной симметрии нематического эластомера тензор релаксации напряжений определяется следующим выражением

(8)

где () – являются некоторыми неизвестными функциями времени t.

Введем нормированную функцию напряжений . При вычислении этих функций применим метод функций памяти Цванцига-Мори.

Комплексная корреляционная функция может быть представлена в виде


,, , . (9)

Тогда, зависящие от частоты коэффициенты вязкости определяется как

. (10)

Для вычисления функции использовано уравнение Цванцига-Мори

, (11)

где – функция памяти, которую будем моделировать с помощью функции

(12)

Параметры и выражены через коэффициенты разложения в ряд по времени функции релаксации напряжений вплоть до . Величина определяется формулой

, (13)

в которой , .

В итоге коэффициенты вязкости определяются как

, (14)


в которой (i = 1–8) имеют смысл некоторых времен корреляции, а выражается через функцию памяти (12).

Численные результаты для времен корреляции и коэффициентов вязкости при нулевых частотах получены при K, м–3 (число фрагментов в единице объема): с, с, с, с, с. В свою очередь коэффициенты вязкости при равны: Пас, Пас, Пас, Пас, Пас, Пас.

Полученные впервые численные результаты имеют разумный физический смысл для невырожденных состояний нематических эластомеров. В невырожденном случае коэффициенты вязкости , , , при ведут себя как .

Давно известны явления усиления пластического деформирования и возникновения хрупкости металлов при воздействии на них металлических расплавов, а также мезо- и нанодиспергирования материалов при контакте с жидкой средой, например, превращения монокристаллов цинка и олова в поликристаллы под действием жидкого галлия [1]. Этот круг явлений и процессов известен по названием эффект Ребиндера (диплом на открытие № 28). Были попытки обосновать эти явления термодинамически на основе явления адсорбции и внедрения жидкой фазы по границам зерен поликристаллов и понижения поверхностной энергии, в том числе с учетом запасенной упругой энергии, связанной с усилением дислокационной структуры вещества при механической обработке. Нестрогость такого подхода связана с неучетом квантовой теории твердых тел и развитых нами представлений о эффектах сильной фонон-электронной связи, которые проявляются в процессах структурообразования, плавления и растворения [2-4]. Противоречивость традиционного подхода проявляется в использовании поверхностного натяжения s для нанообъектов, в том числе рассмотрении роста s при уменьшении размера частиц [1] и поиске какого-либо специфического механизма превращения упругой энергии дислокационной сетки в поверхностную энергию, а также тем, что дислокационная сетка скорее упрочняет, а не ослабляет материал.

Одним из механизмов диспергирования материалов рассматривалось их растворение и повторное объединение растворенных атомов и молекул в дисперсных частицах. Роль жидкости при этом связывалась с ростом в ней скорости диффузии на много порядков по сравнению с твердым телом. Иногда диспергирование связывается с тепловым возбужденим акустических волн и превышением в области изгиба предела прочности материала [1]. Хотя в целом правильно указывалось, что отщепление коллоидных частиц от поверхности материала осуществляется под действием тепловых колебаний, неверно говорить о самопроизвольном диспергировании. Несмотря на множество работ в этом направлении до настоящего времени не указаны фундаментальные причины измения прочности и пластичности твердых тел при контакте с жидкими средами, что широко используется в технологических поцессах. В целом классический термодинамический подход с использованием феноменологических величин является ограниченным и временным.

Нами развивается существенно новый подход в физике процессов структурообразования в конденсированном состоянии вещества на основе обобщения огромного экспериментального материала, и в первую очередь наиболее однозначно интерпретируемых спектроскопических данных. Фактически речь идет о создании нелинейно-квантовой макрофизики (НКМ), которая является дальнейшим развитием и обобщением квантовой механики сложных систем и физики многоволновых нелинейных резонансных взаимодействий, статистической физики, термо- и упругодинамики. Используемый подход основывается на рассмотрении новых сложных квантовых закономерностей в многочастичных системах и эффектов сильного фонон-электронного взаимодействия [2-4], а также установлении коллективно-квантового характера наблюдаемых макроскопичесих величин (тепло- и электропроводности, вязкости, диэлектрической проницаемости, поверхностного натяжения и др.) и важной роли нелинейных резонансных взаимодействий колебательных мод конденсированных сред. Нелинейно-квантовый характер анализируемых процессов доказывается установлением единства процессов плавления и растворения [4], связанных с возбуждением высших колебательных состояний и их взаимодействием с электронными состояниями и перестройкой последних, что связано с изменением структуры веществ и их свойств.

Возбуждение обертонов и суммарных тонов колебательных мод происходит в результате нелинейного резонансного взаимодействия акустичеких и оптических фононов, что прямо доказано спектроскопически, а также корреляцией теплот фазовых переходов 1-го рода Qm с энергиями оптических фононов [3]. Колебательно индуцированное изменение квантовых электронных свойств веществ доказывается сильным изменением интенсивностей полос высших колебательных мод и наблюдением новых электронных полос ряда диэлектриков и жидких сред в области колебательных мод [2]. В кристаллах Li и Be плавление связано с возбуждением предельных акустических мод νmax с частотами ~250 и 1090 см-1, которые определялись по температурам Дебая. Плавление Na, Ga индуцируется возбуждением двух фононов 2hcνmax на каждый атом. Плавление Al, K происходит в случае возбуждения 3νmax, а Ag, Zr - 6νmax. Для кристалла кремния теплота Qm очень точно равна энергии восьми оптических фононов 520 см-1. Кристалл Zn плавится при сильном возбуждении около 9 оптических фононов, а корунд (Al2O3) - при возбуждении обертона 25νо моды Еg с частотой 378 см-1. Порядок актуального колебательного обертона или суммарного тона, индуцирующего изменение квантового электронного состояния, определяется разностью энергий жидкого и твердого состояний. Контакт с жидкостью повышает нелинейность связанной среды и ведет к появлению изменений подобных плавлению при существенно более низких температурах. В этом случае пластическая деформация возможна при небольших сдвиговых деформациях, а разрушение твердого тела - при напряжениях меньших предела пластичности и прочности в сотни раз.

Важность нелинейных волновых взаимодействий для многих явлений, в частности в эффекте Ребиндера, связана как с повышенной нелинейностью жидкостей и смесей веществ (особенно вблизи эвтектических концентраций), а также дисперсных сред из-за значительной части поверхностных атомов с повышенной ангармоничностью связей. В результате взаимосвязи поведения атомов и электронов сильное возбуждение высших колебательных состояний индуцирует перестройку электронных состояний и изменение межчастичных взаимодействий. С этим связано давно известное явление термического сжатия линейных размеров ряда твердых тел. Это явление иллюстрируется рис.1, где показаны температурные зависимости коэффициентов линейного расширения α. Для ряда металлов, их сплавов, а также стеклообразующих веществ (Se, Te, SiO2) в широкой температурной области наблюдаются отрицательные величины α, то есть реализуется тепловое сжатие а не расширение. Это естес-твенно объясняет суще- ствование высокотем-пературных максиму-мов модулей Юнга Е и сдвига μ. Существова-ние концентрационных максимумов Е и μ (см. рис.2) наглядно демон-стрирует проявление нелинейных механизмов, ведь нелинейные свойства усиливаются для смешанных систем. Аналогичные концентрационные зависимости наблюдаются для скоростей поперечных и продольных акустических волн, плотностей и показателей преломления, поведения теплоемкостей ряда сред. Существует много сплавов (CaCu, TlAu, CaNi, AuSi), для которых значения температуры плавления Tm уменьшаются на многие сотни градусов по сравнению с плавлением их компонентов или сильно повышаются (Ga2Pr, Li3Bi, SbY, UBe13), что связано соответственно с повышением и уменьшением нелинейности среды. Нелинейная концепция объясняет также возрастание прочности нитевидных кристаллов с высокой плотностью дефектов, что способствует повышению нелинейности.

С использованием методов спектроскопии изображений в ближней ИК области (0,8-1,7 мкм) [5] доказана пространственная неоднородность воды и некоторых водных ростворов электролитов, а также обнаружено явление расслоения капилярной воды на два различные состояния. Это позволило поставить общую проблему неоднородного пространственного упорядочения и одновременного существования нескольких квантовых состояний веществ, которые ранее предполагались однородными. Колебательно индуцированные изменения электронных состояний [2-4] приводят к колебательной неустойчивости однородного пространственного состояния вещества. Это позволяет понять превращение моно- и поликристаллических твердых тел без внешних механических напряжений в дисперсные системы, в которых зерна твердой фазы разделены тонкими жидкими прослойками. Диспергирование является по сути колебательно индуцированным электронным переходом для системы твердое тело-жидкость. Наглядно диспергирование веществ можно объяснить энергетически более выгодным упорядочением вещества при отсутствии далекого порядка. В идеальных кристаллах реализации таких типов связей и упорядочения препятствует далекий порядок.

В фундаментальном плане к проблеме изменения прочности и диспергирования твердых тел близки проблемы неоднордного распределения вещества в критической и закритической области и использования закритических химических технологий, а также расслоения растворов жидкостей и тиксотропии. В практическом плане важность рассматриваемой проблематики связана с использованием изменения прочности и пластичности материалов в различных технологических поцессах. Можно надеяться, что раскрытие фундаментальных механизмов таких изменений позволит более полно использовать их на практике, например, для управления свойствами веществ и получения новых веществ с измененными характеристиками, а также добычи метана из газогидратов в глубинах земной коры.


Литература

1.А.В.Перцов, Н.В.Перцов, Эффект Ребиндера, процессы самопроизвольного диспергирования и образования наносистем. В кн. «Коллоидно-химические основы нанонауки», Киев, Академпериодика, 2005, с.340-360.

2. Корниенко Н.Е., Эффекты сильного фонон-электронного взаимодействия 1. Открытие электронных полос нового типа // Вестник Киевского университета, Cерия: физико-математические науки, 2006, випуск № 3, с. 489-500.

3. Корниенко Н.Е. О связи теплот плавления кристаллов с энергиями оптических фононов // Вестник Киевского университета, Cерия: физико-математ. науки, 2004, № 4, с.466-476.

4. Корниенко Н.Е. Квантовые закономерности в водных растворах электролитов. 1. Природа растворимости веществ в воде и гидратации ионов. // Вестник Киевского университета, Cерия: физико-математические науки, 2006, випуск № 2. с. 438-451.

5. Garbe C., Korniyenko N., Smoljar N., Schurr U., Water relations in plant leaves, Lecture Notes in Computer Science, LNCS, Chapter 19, pp 377-401, Springer Verlag, 2003.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита17:29:44 02 ноября 2021
.
.17:29:40 02 ноября 2021
.
.17:29:38 02 ноября 2021
.
.17:29:37 02 ноября 2021
.
.17:29:36 02 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Реферат: Релаксорные сегнетоэлектрики в системе твердых растворов

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287945)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте