Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Высшая математика в экономике

Название: Высшая математика в экономике
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 09:15:53 15 июля 2009 Похожие работы
Просмотров: 119 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

План

Задание 1

Задание 2

Задание 3

Задание 4

Задание 5

Задание 6

Задача 7

Задание 8

Литература

Задание 1

Мебельной фабрике для изготовления комплектов корпусной мебели необходимо изготовить их составные части - книжный шкаф, шифоньер, тумба для аппаратуры. Эти данные представлены в таблице:

Наименование составных частей

Виды комплектов корпусной мебели

1

2

3

4

Книжный шкаф

1

1

1

1

Шифоньер

1

1

1

1

Пенал

0

0

1

1

Тумба

0

1

0

1

В свою очередь, для изготовления этих составных частей необходимы три вида сырья - стекло (в кв. м), ДСП (в кв. м), ДВП (в кв. м), потребности в котором отражены в следующей таблице:

Вид сырья

Составные элементы

Кн. шкаф

Шифоньер

Пенал

Тумба

Стекло

0,9

0

0,2

1,2

ДСП

6

6,5

6

2,5

ДВП

2,9

1,7

1,4

0,6

Требуется:

1) определить потребности в сырье для выполнения плана по изготовлению стенок первого, второго, третьего и четвертого вида в количестве соответственно x1 , x2, x3 и x4 штук;

2) провести подсчеты для значений x1 = 50, x2 = 30, x3 = 120 и x4 =80.

Решение: составим условия для определения числа составных частей в зависимости от числа и вида комплектов мебели. Пусть n1 , n2 , n3 и n4 - число шкафов, шифоньеров, пеналов и тумб, соответственно.

Тогда условия будут выглядеть следующим образом:

n1 = x1 + x2

n2 = x1 + x2 + x4

n3 = x1 + x2 + x3

n4 = x1 + x2 + x3 + x4

Составим условия определяющие потребности в сырье в зависимости от вида деталей. Пусть y1 , y2 и y3 - потребности в стекле, ДВП и ДСП, соответственно:

y1 = 0,9n1 + 0,2n3 + 1,2n4

y2 = 6n1 + 6,5n2 + 6n3 + 2,5n4

y3 = 2,9n1 + 1,7n2 + 1,4n3 + 0,6n4

Теперь подставим вместо ni - полученные ранее равенства.

y1 = 0,9· (x1 + x2 ) + 0,2· (x1 + x2 + x3 ) + 1,2· (x1 + x2 + x3 + x4 )

y2 = 6· (x1 + x2 ) + 6,5· (x1 + x2 + x4 ) + 6· (x1 + x2 + x3 ) + 2,5· (x1 + x2 + x3 + x4 )

y3 = 2,9· (x1 + x2 ) + 1,7· (x1 + x2 + x4 ) + 1,4· (x1 + x2 + x3 ) + 0,6· (x1 + x2 + x3 + x4 )

Приведем подобные

y1 = 2,3x1 + 2,3x2 + 1,4x3 + 1,2x4, y2 = 21x1 + 21x2 + 8,5x3 + 9x4

y3 = 6,6x1 + 6,6x2 + 2x3 + 2,3x4

Проведем подсчеты для значений

x1 = 50, x2 = 30, x3 = 120 и x4 = 80

y1 = 2,3 * 50 + 2,3 * 30 + 1,4 * 120 + 1,2 * 80 = 448 кв. м.

y2 = 21 * 50 + 21 * 30 + 8,5 * 120 + 9 * 80 = 3420 кв. м.

y3 = 6,6 * 50 + 6,6 * 30 + 2 * 120 + 2,3 * 80 = 952 кв. м.

Задание 2

Пусть aij - количество продукции j, произведенной предприятием i, а bi - стоимость всей продукции предприятия i исследуемой отрасли. Значения aij и bi заданы матрицами A и В соответственно. Требуется определить цену единицы продукции каждого вида, производимой предприятиями отрасли. В ходе выполнения задания необходимо составить систему уравнений, соответствующую условиям, и решить ее тремя способами (матричный метод, метод Крамера, метод Гаусса).

,

Решение:

Составим систему уравнений:

Матричное уравнение выглядит следующим образом:

A · X = B

Домножим слева каждую из частей уравнения на матрицу A-1

A-1 · A · X = A-1 · B;

E · X = A-1 · B;

X = A-1 · B

Найдем обратную матрицу A-1

Δ = 4 * 12 * 4 + 12 * 7 * 13 + 14 * 7 * 9 - 9 * 12 * 7 - 12 * 14 * 4 - 4 * 7 * 13 = 374

;

X =· = =

Решим систему методом Крамера

Δ = 374

Δ1 = = 97 * 12 * 4 + 129 * 7 * 13 + 14 * 7 * 109 - 109 * 12 * 7 - 129 * 14 * 4 - 97 * 7 * 13 = 1870

Δ2 = = 4 * 129 * 4 + 12 * 7 * 109 + 97 * 7 * 9 - 9 * 129 * 7 - 12 * 97 * 4 - 4 * 7 * 109 = 1496

Δ3 = = 4 * 12 * 109 + 12 * 97 * 13 + 14 * 129 * 9 - 9 * 12 * 97 - 12 * 14 * 109 - 4 * 129 * 13 = 1122

x1 = Δ1/ Δ = 1870/374 = 5, x2 = Δ2/ Δ = 1496/374 = 4

x3 = Δ3/ Δ = 1122/374 = 3

Решим систему методом Гаусса

=> =>

=>

=> =>

Задание 3

Найти частные производные первого и второго порядков заданной функции:

Решение:

Задание 4

Задана функция спроса , где p1 , p2 - цены на первый и второй товары соответственно.

Основываясь на свойствах функции спроса, определить: какой товар является исследуемым, а какой альтернативным и эластичность спроса по ценам исследуемого и альтернативного товаров.

В процессе решения отметить, какими являются данные товары - взаимозаменяемыми или взаимодополняемыми.

Решение:

Эластичность спроса по цене равна первой производной от функции спроса:

эластичность отрицательная, следовательно, первый товар - исследуемый.

эластичность отрицательная.

Товары являются товарами дополнителями, т.к рост цен на второй товар, как и рост цен на первый товар приводит к снижению спроса.

Задание 5

В таблице приведены данные о товарообороте магазина за прошедший год (по месяцам). Провести выравнивание данных по прямой с помощью метода наименьших квадратов. Воспользовавшись найденным уравнением прямой, сделать прогноз о величине товарооборота через полгода и год. Сопроводить задачу чертежом, на котором необходимо построить ломаную эмпирических данных и полученную прямую. Проанализировав чертеж, сделайте выводы.

Месяц

1

2

3

4

5

6

7

8

9

10

11

12

Товарооборот, (тыс. р)

22

4,4

37

57,4

55,4

72

91,6

78,4

58

59

42

37,6

Решение:

Рассчитаем параметры уравнения линейной парной регрессии.

Для расчета параметров a и b уравнения линейной регрессии у = а + bx решим систему нормальных уравнений относительно а и b (она вытекает из метода наименьших квадратов):

По исходным данным рассчитываем Sх, Sу, Sух, Sх2 , Sу2 .

t

y

x

yx

x2

y2

1

22,0

1

22,0

1

484,00

36,688

2

4,4

2

8,8

4

19,36

39,332

3

37,0

3

111,0

9

1369,00

41,976

4

57,4

4

229,6

16

3294,76

44,62

5

55,4

5

277,0

25

3069,16

47,264

6

72,0

6

432,0

36

5184,00

49,908

7

91,6

7

641,2

49

8390,56

52,552

8

78,4

8

627,2

64

6146,56

55, 196

9

58,0

9

522,0

81

3364,00

57,84

10

59,0

10

590,0

100

3481,00

60,484

11

42,0

11

462,0

121

1764,00

63,128

12

37,6

12

451,2

144

1413,76

65,772

Итого

614,8

78

4374

650

37980,16

614,76

; ; ;

;

Уравнение регрессии: = 34,06 + 2,642 · х

Рассчитаем по данному уравнению значения для и запишем их в дополнительный столбец исходных данных. Найдем прогноз на полгода вперед:

= 34,06 + 2,642 * 18 = 81,636 тыс. руб.

Найдем прогноз на год вперед:

= 34,06 + 2,642 * 24 = 97,5 тыс. руб.

Полученные графики говорят о плохом отражении исходных данных уравнением прямой. Возможно это связанно с наличием сезонности в товарообороте. Тогда прямая линия является уравнением тренда.

Задание 6

Исследовать на экстремум следующую функцию:

;

Решение:

Найдем первые частные производные и определим точки потенциальных экстремумов (там где производные равны нулю).

= 2x + y - 4; = 4y + x - 2;

; ; ; ;

Найдем вторые производные и их значения в точке (2; 0)

= 2 = А, = 1 = B

= 4 = C, Δ = AC - B2 = 2 * 4 - 1 = 7

Т.е. в точке (2; 0) имеется экстремум.

Т.к. А > 0, то точка (2; 0) минимум функции.

Задача 7

Пусть функция полезности задана как

где x и y - количество товаров А и В, приобретаемых потребителем, а значения функции полезности численно выражают меру удовлетворения покупателя. При данной стоимости единицы товаров А и В, общая сумма, выделяемая покупателем на их покупку, составляет 140 рублей. При каком количестве товаров А и В полезность для потребителя максимальна. А = 11, В = 17.

Решение:

Полезность максимальна при равенстве первых производных:

= ; = ; = ; =

Ограничение стоимости задается неравенством 11x + 17y ≤ 140

Составим систему.

; ; ;

Максимальная полезность будет достигнута при потреблении 4,46 ед. А и 5,35 ед.в.

Задание 8

Заданы функции спроса и предложения в зависимости от количества товара Q: и . Под функциями спроса и предложения будем понимать функциональную зависимость цены от количества товара на рынке. Определить излишки потребителя и излишки производителя при равновесном состоянии спроса и предложения.

и ,

Решение: найдем равновесное состояние спроса и предложения:

D (Q) = S (Q); = ; ; - t2 - 10t + 200 = 0

t1 = - 34,685 и t2 = 12,685, t1 - не удовлетворяет условию

=12,685; Q = 160,9 ед.

При этом цена составит: Р = 10 * 12,685 = 126,85 ден. ед.

Излишки потребителя равны площади фигуры ограниченной сверху кривой спроса, снизу равновесной ценой и слева нулевым выпуском. Найдем излишки потребителя:

Sпотр = - 126,85 · 160,9 = - 20410,165 =

= 200 * 160,9 - 5/22 * 160,9 - 20410,165 = 11733,27 ден. ед.

Излишки производителя равны площади фигуры ограниченной сверху равновесной ценой, слева нулевым выпуском и снизу кривой предложения. Найдем излишки производителя:

Sпроизв = 126,85 · 160,9 - = 20410,165 - =

= 20410,165 - 5 * 12,6853 = 10204,5 ден. ед.

Литература

1. Н.Ш. Кремер. Высшая математика для экономистов. - М.: Банки и биржи, ЮНИТИ, 1997.

2. Н.Ш. Кремер. Практикум по высшей математике для экономистов. - М.: ЮНИТИ-ДАНА, 2007.

3. И.А. Зайцев. Высшая математика. -М.: Высшая школа, 1998.

4. Математический анализ и линейная алгебра. Учебное методическое пособие. Под ред. Н.Ш. Кремера. - ВЗФЭИ, 2006.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита21:39:59 02 ноября 2021
.
.21:39:57 02 ноября 2021
.
.21:39:54 02 ноября 2021
.
.21:39:53 02 ноября 2021
.
.21:39:52 02 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Контрольная работа: Высшая математика в экономике

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287966)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте