Практическая работа
На тему: «Вычисление наибольшего, наименьшего значения функции в ограниченной области»
Цель
1. Ознакомление и приобретение навыков вычисления наибольшего, наибольшего значения функции в ограниченной области.
Основные вопросы:
1.Наибольшее и наименьшее значение функции.
2.Ограниченная область.
3.Равномерно непрерывная функция.
Если функция f(x, y, …) определена и непрерывна в замкнутой и ограниченной области D, то в этой области найдется, по крайней мере, одна точка
N(x0
, y0
, …), такая, что для остальных точек верно неравенство
f(x0
, y0
, …) ³ f(x, y, …)
а также точка N1
(x01
, y01
, …), такая, что для всех остальных точек верно неравенство
f(x01
, y01
, …) £ f(x, y, …)
тогда f(x0
, y0
, …) = M – наибольшее значение
функции, а f(x01
, y01
, …) = m – наименьшее значение
функции f(x, y, …) в области D.
Непрерывная функция в замкнутой и ограниченной области D достигает по крайней мере один раз наибольшего значения и один раз наименьшего.
Свойство.
Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, а M и m – соответственно наибольшее и наименьшее значения функции в этой области, то для любой точки m Î [m, M] существует точка
N0
(x0
, y0
, …) такая, что f(x0
, y0
, …) = m.
Проще говоря, непрерывная функция принимает в области D все промежуточные значения между M и m. Следствием этого свойства может служить заключение, что если числа M и m разных знаков, то в области D функция по крайней мере один раз обращается в ноль.
Свойство.
Функция f(x, y, …), непрерывная в замкнутой ограниченной области D, ограничена
в этой области, если существует такое число К, что для всех точек области верно неравенство
Свойство.
Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, то она равномерно непрерывна
в этой области, т.е. для любого положительного числа e существует такое число D > 0, что для любых двух точек (х1
, y1
) и (х2
, у2
) области, находящихся на расстоянии, меньшем D, выполнено неравенство
Точки, в которых функция принимает наибольшее или наименьшее значения в ограниченной замкнутой области, называют также точками абсолютного или глобального экстремума. Если наибольшее или наименьшее значения достигаются во внутренних точках области, то это точки локального экстремума функции z = f ( x , y ) . Таким образом точки, в которых функция принимает наибольшее или наименьшее значения являются либо локальными экстремумами, либо граничными точками области. Следовательно, чтобы найти наибольшее и наименьшее значения функции z = f ( x , y ) в ограниченной замкнутой области D, следует вычислить значение функции в критических точках области D, а также наибольшее и наименьшее значения функции на границе. Если граница задана уравнением ϕ ( x , y ) = 0 , то задача отыскания наибольшего и наименьшего значений функции на границе области D сводится к отысканию наибольшего и наименьшего значений (абсолютного экстремума) функции одной переменной, так как уравнение границы области D - ϕ ( x , y ) = 0 связывает переменные x и y между собой. Значит, если разрешить уравнение ϕ ( x , y ) = 0 относительно одной из переменных или параметрические уравнения границы области D и подставить их в уравнение z = f ( x , y ) , то придем к задаче нахождения наибольшего и наименьшего значений функции одной переменной. Если уравнение ϕ ( x , y ) = 0 невозможно разрешить относительно одной из переменных или невозможно найти параметрическое задание границы, то задача сводится к отысканию условного экстремума.
Правило нахождения наибольшего и наименьшего значений дифференцируемой в области D функции z = ƒ(х;у) состоит в следующем:
1. Найти все критические точки функции, принадлежащие D , и вычислить значения функции в них;
2. Найти наибольшее и наименьшее значения функции z = ƒ(х;у) на границах области;
3. Сравнить все найденные значения функции и выбрать из них наибольшее М и наименьшее.
Задачи:
1.
Найти наибольшее и наименьшее значения функции z=х2
у + ху2
+ ху в замкнутой области, ограниченной линиями: у = 1
/x
, х = 1, х = 2, у = -1,5
Решение: Здесь z'x
=2ху+у2
+у, z'y
=х2
+2ху+х.
Находим все критические точки:
Решением системы являются точки (0;0), (-1;0), (0; -1),(-1/3;-1/3). Ни одна из найденных точек не принадлежит области D .
2
. Исследуем функцию z на границе области, состоящей из участков АВ, ВС, СЕ и ЕА
На участке АВ:
Значения функции z(-1) = -1,
На участке ВС:
Значения функции z(1) = 3, z(2) = 3,5.
На участке СЕ:
z'y
=4у+6, 4у+6=0, у=-3/2.
Значения функции
На участке АЕ:
Значения функции z(1) = -3/4,z(2) = -4,5.
3
. Найти наибольшее M
и наименьшее m
значения функции z = 4x2-2xy+y2-8x
в замкнутой области D
, ограниченной: x = 0, y = 0, 4x+3y=12
.
Решение
1. Построим область D
(рис. 1.5) на плоскости Оху
.
Угловые точки: О (0; 0), В (0; 4), А (3; 0).
Граница Г
области D
состоит из трёх частей:
Примеры:
1. Найти наибольшее и наименьшее значения функции z = х2
у + ху2
+ ху
в замкнутой области, ограниченной линиями: х =
1, х =
2, у =
1,5
2. Найти наибольшее и наименьшее значения функции z = 2 x 3 − 6 xy + 3 y 2 в замкнутой области D, ограниченной осью OY, прямой y = 2 и параболой y = x 2 при x ≥ 0 .
3. Найти наибольшее M и наименьшее m значения функции z = 4x2-2xy+y2-8x в замкнутой области D, ограниченной: x = 0, y = 0, 4x+3y=12 .
4. Найти наибольшее и наименьшее значения функции z=х2
у + ху2
+ ху в замкнутой области, ограниченной линиями: у = 1
/x
, х = 1, х = 2, у = -1,5
5. Найти наибольшее и наименьшее значения функции в треугольнике, ограниченном прямыми , , .
|