Задание 1.
Найти производные функций
a)
Пусть
, , тогда
b)
Если функция имеет вид , то её производная находится по формуле
.
Перейдем от десятичного логарифма к натуральному:
По свойству логарифма
Таким образом,
c)
Продифференцируем уравнение, считая
y
функцией от х:
Задание 2.
Исследовать методами дифференциального исчисления и построить график функции
Областью определения функции
являются все действительные числа,
кроме х=0. В точке х=0 функция разрывна
.
Функция нечетная
, т. к.
Функция не пересекается с осями
координат (уравнение
y
=0 не имеет решений).
Найдем производную функции:
.
Найдем стационарные точки, приравняв производную к нулю.
Функция возрастает
в промежутке (-∞; – 1) U (1; ∞)
и убывает
в промежутке (-1; 0) U (0; 1).
Функция имеет экстремумы
: максимум – в точке х=-1, минимум – в точке х=1.
Исследуем функцию на выпуклость / вогнутость
.
Для этого найдем производную второго порядка и, приравняв её к нулю, вычислим критические точки второго рода.
В точке х=0 вторая производная не существует, т. к. это точка разрыва функции. В интервале (-∞; 0)
<0, следовательно, график функции в этом интервале выпуклый. В интервале (0;∞)
>0, следовательно, график функции в этом интервале вогнутый.
Асимптоты
графика функции
:
1) вертикальная асимптота – прямая х=0
Т.к. и
2) горизонтальных асимптот нет,
т. к. и
3) наклонных асимптот нет,
т. к.
и
Задание 3
. Найти экстремумы функции
Z
=
ln
(3 –
x
2
+ 2
x
–
y
2
)
Найдем частные производные первого порядка.
М (1; 0) – стационарная точка.
Найдем вторые производные и их значения в точке М.
>0 Следовательно, функция
Z
=
ln
(3 –
x
2
+ 2
x
–
y
2
) имеет экстремум в точке М (1; 0) – максимум, т. к.
A
< 0.
Задание 4
. Вычислить неопределенные интегралы, результат проверить дифференцированием
a)
Решаем методом замены переменной. Положим ,
тогда ,
Таким образом, получаем
Вернемся к переменной х.
Проверим дифференцированием:
b)
Воспользуемся таблицей неопределенных интегралов [Выгодский, М.Я. Справочник по высшей математике. – М.: Наука, 1972. – 872 с.:ил. – С. 850]
С
Проверим дифференцированием:
c)
Неправильную рациональную дробь приводим к правильной делением числителя на знаменатель, получаем
Согласно свойству интервала алгебраической суммы, имеем
Подстановка
приводит интеграл к виду
Возвращаясь к аргументу х, получаем
Таким образом, ,
где
С=С1
+С2
Проверим дифференцированием:
Задание 5
. Вычислить определенный интеграл
Сначала вычислим неопределенный интеграл методом замены переменной. Полагая , находим
Вернемся к переменной х.
Таким образом
,
Библиографический список
1. Баврин, И.И. Высшая математика: учебник/ И.И. Баврин. – М.: Академия, 2003. – 616 с.:ил.
2. Выгодский, М.Я. Справочник по высшей математике/М.Я. Выгодский. – М.: Наука, 1972. – 872 с.:ил.
3. Выгодский, М.Я. Справочник по элементарной математике/М.Я. Выгодский. – СПб.: Изд. «Санкт-Петербург оркестр», 1994. – 416 с.:ил.
|