Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Система автоматического регулирования давления в ресивере

Название: Система автоматического регулирования давления в ресивере
Раздел: Промышленность, производство
Тип: курсовая работа Добавлен 01:11:01 20 декабря 2010 Похожие работы
Просмотров: 592 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Федеральное агентство по образованию

Филиал государственного образовательного учреждения высшего профессионального образования «Самарский государственный технический университет» филиал в г. Сызрани

Кафедра электротехники, информатики и компьютерных технологий

КУРСОВАЯ РАБОТА по дисциплине « Теория автоматического управления»

Тема : «Система автоматического регулирования давления в ресивере».

2008 год


Содержание

Техническое задание

Введение

1. Построение структурной схемы нескорректированной системы и определение передаточных функций её звеньев

2. Оценка точности и анализ качества исходной системы

3. Построение логарифмических амплитудно-частотных характеристик для исходной системы, желаемой и корректирующего звена

4. Синтез последовательного корректирующего устройства

5. Оценка точности и качества скорректированной системы с учётом ограничений выходного сигнала регулятора путём моделирования

Заключение

Библиографический список использованной литературы


Техническое задание

Техническое задание включает в себя сведения о принципе действия нескорректированной системы автоматического регулирования (САР), ее функциональную схему, параметры всех звеньев системы, характеристики входных и возмущающих воздействий, показатели качества проектируемой САР.

Для САР приводятся ограничение выходного сигнала электронного усилителя, требуемое значение выходного сигнала, максимальная относительная ошибка системы ν (в %), допустимое относительное перерегулирование σ (в%).

Требуется спроектировать следящую систему автоматического регулирования, удовлетворяющую заданным условиям. Исходная система состоит из набора неизменяемых устройств, необходимо рассчитать корректирующие устройства.

Давление в данной системе контролируется с помощью сильфонного датчика 3, выходная величина которого - перемещение Хс сильфона 5 однозначно зависит от разности сил, где Fр - сила, создаваемая давлением Р; F о - сила натяжения пружины 6, которое можно изменять винтом 7. Перемещение сильфона Хс с помощью потенциометрического преобразователя 4 преобразуется в электрический сигнал – напряжение U, которое усиливается электронным усилителем 8.

Выходной сигнал усилителя U , управляет электромагнитным приводом 9, связанным с заслонкой 2.

В данной САР сильфонный датчик выполняет функции воспринимающего, задающего и сравнивающего органов. Как воспринимающий орган он контролирует давление Р, преобразуя его в силу F р. Задание требуемого давления в ресивере обеспечивается посредством силы F о. Как сравнивающий орган сильфон обеспечивает сравнение величин F о и F р,в результате чего получается - сигнал рассогласования .

Динамические свойства объекта регулирования и элементов САР описываются следующей системой уравнений:

F р В р- воспринимающий орган

- сравнивающий орган

-ресивер

- сильфон

- потенциометрический преобразователь

- усилитель

- электромагнитный привод совместно с заслонкой

Выходной сигнал электронного усилителя ограничен уровнем 48 В. Требуемое значение давления Р=500 кПа.

Результатом курсового проектирования должна быть скорректированная система параметры которой соответствуют параметрам, приведённым в задании.

Таблица 1

Задание

вариант

To ko T1 T2 kc kQ kП ky T3 k3 ν σ
c c c c % %
4-9 0.7 6 0.4 0.025 2.5 0.5 200 0.13 0.2 26 0.01 2 2 5

Введение

Задача синтеза системы автоматического регулирования заключается в выборе такой её структуры, параметров, характеристик и способов их реализации, которые при заданных ограничениях наилучшим образом удовлетворяют требованиям, предъявленным к системе.

Заданная часть проектируемой системы является исходной или нескорректированной САР. Параметры ее основных функциональных элементов известны. В такой постановке задача проектирования сводится к определению корректирующего устройства, обеспечивающего заданные показатели качества системы.

Наиболее простым, наглядным и хорошо разработанным инженерным методом синтеза САР является метод логарифмических амплитудных частотных характеристик (ЛАЧХ). Его идея основана на однозначной связи между переходным процессом в системе и ее ЛАЧХ. Исходя из этого, по заданным динамическим показателям и точности сначала строится желаемая ЛАЧХ, а затем путем графического построения осуществляется приближение к ней частотных характеристик исходной системы. В результате такой процедуры определяется ЛАЧХ корректирующего устройства.

Для синтеза САР необходимо выполнить ряд следующих задач:

1. Построение структурной схемы нескорректированной системы и определение передаточных функций её звеньев.

2. Оценка точности и анализ качества исходной системы (запаса устойчивости и быстродействия) с использованием пакета ControlSystemToolbox.

3. Построение желаемой ЛАЧХ.

4. Определение желаемых передаточных функций разомкнутой и замкнутой системы. Оценка показателей качества желаемой системы с использованием математического пакета МatLab.

5. Синтез последовательного корректирующего устройства (регулятора).

6. Реализация корректирующего устройства в виде аналогового и цифрового регуляторов

7. Оценка точности и качества скорректированной системы с учетом ограничений выходного сигнала регулятора путём моделирования с помощью пакета SIMULINK.

8. Построение и описание функциональной схемы скорректированной системы (с приведением параметров САР и её показателей качества).

1. Построение структурной схемы нескорректированной системы и определение передаточных функций её звеньев .

По заданной функциональной схеме (рис.1) составим структурную схему исходной системы . Она изображена на рис.2 :

Будем считать , что все звенья системы линейны . Таким образом , в рассматриваемой системе отпадает необходимость линеаризации и можно сразу приступить к определению передаточных функций динамических звеньев на основе их дифференциальных уравнений.

Запишем в общем виде передаточные функции каждого звена системы :

Прямой канал

ПФ сильфона :

ПФ потенциометрического преобразователя :

ПФ усилителя :

ПФ электромагнитного привода совместно с заслонкой

Ресивер является одновременно объектом регулирования и возмущающим воздействием , поэтому представим его в виде двух блоков с передаточными функциями :

;

;

Обратный канал

ПФ воспринимающего органа :

Передаточная функция двигателя записана в общем виде . Для определения типа сильфона исследуем его на колебательность , проверив следующее условие : .

Если оно выполняется , то сильфон является апериодическим звеном второго порядка , если не выполняется – колебательным звеном.

Для этого подставим значения Т 2 и Т1 из таблицы 1 в данное условие :

отсюда

Мы видим , что условие выполняется , значит сильфон является апериодическим звеном второго порядка и его ПФ может быть записана в виде:

Для нахождения коэффициентов и воспользуемся соотношениями

Решим систему из двух линейных уравнений :


В результате получим и решим квадратное уравнение:

В итоге получаем :

;

Сделаем проверку :

Найдём передаточную функцию разомкнутой системы исходя из передаточных функций её звеньев и структурной схемы нескорректированной системы ( рис.2) ;

Подставим в выражение численные значения коэффициентов и получим следующее :


2. Оценка точности и анализ качества исходной системы

Приведём систему к единичной обратной связи , тогда структурная схема нескорректированной системы приведённой к единичной обратной связи будет иметь вид:

Тогда передаточная функция замкнутой системы принимает вид:

Найдём ошибку системы , величина которой равна

Ошибка по входу будет равна :

Ошибка по возмущению будет равна :

Общая ошибка будет равна :

Далее для оценки свойств системы воспользуемся пакетом прикладных программ

ControlSystemToolbox математического пакета MatLab.

Занесём в tf-форме передаточную функцию разомкнутой исходной системы в MatLab , обозначив её через Wr , для этого сначала введём передаточные функции звеньев и найдём их произведение :

>> w1=tf([78],[0.0016,1])

Transfer function:

78

------------

0.0016 s + 1

>> w2=tf([1],[0.3985,1])

Transfer function:

1

------------

0.3985 s + 1

>> w3=tf([1],[0.01,1])

Transfer function:

1

----------

0.01 s + 1

>> w4=tf([1],[0.7,1])

Transfer function:

1

---------

0.7 s + 1

>> Wr=w1*w2*w3*w4

Transfer function:

78

-------------------------------------------------------

4.463e-006 s^4 + 0.003253 s^3 + 0.2917 s^2 + 1.11 s + 1


Далее строим логарифмические амплитудные характеристики :

>> margin(Wr);gridon

Для определения устойчивости замкнутой системы автоматического управления построим годограф Найквиста от разомкнутой системы с помощью средств MatLab.(рис.5)

>> nyquist(Wr);grid on

Точка с координатами (0;-j) охватывается годографом, следовательно исходная система не устойчива.

Чтобы оценить время переходного процесса и относительное перерегулирование , введём в нашу модель единичную обратную связь и построим график переходного процесса замкнутой исходной системы (рис.6)

>> f=tf([1])

Transfer function:

1

>> W=feedback(Wr,f)

Transfer function:

78

--------------------------------------------------------

4.463e-006 s^4 + 0.003253 s^3 + 0.2917 s^2 + 1.11 s + 79

>> step(W);grid on

Из графика (рис.6) видно , что время перехода равно 15 секунд , подобная скорость переходного процесса приемлема , но не желательна .

Относительное перерегулирование составляет приблизительно , что является слишком большим значением и превышает допустимое по условию задания (σ =5 %).

Оценив характеристики исходной системы , делаем вывод о том , что система требует доработки в виде дополнительного корректирующего устройства (регулятора)

5. Построение логарифмических амплитудно-частотных характеристик для исходной системы, желаемой и корректирующего звена .

Для построения ЛАЧХ используется стандартная сетка ,. По оси абсцисс откладывается угловая скорость в логарифмическом масштабе , т.е. наносятся отметки , соответствующие , а около отметок пишется само значение частоты в рад/с . Выбираем длину , равную 50мм . По оси ординат откладывается модуль в дБ.

Построим для нашей исходной системы так называемую асимптотическую ЛАЧХ ( см. приложение), представляющую собой совокупность отрезков прямых линий снаклонами , кратными величине 20 дБ/дек, а точки перегибов соответствуют десятичным логарифмам частот , равных величинам , обратным постоянным времени из передаточной функции.

Для построения исходной ЛАЧХ будем использовать передаточную функцию

; ;


Начальный уровень исходной ЛАЧХ будет равен :

Для построения желаемой ЛАЧХ необходимо найти желаемый передаточный коэффициент:

;

Из построенной желаемой ЛАЧХ определяем передаточную функцию разомкнутой желаемой системы :

,

Для построения ЛАЧХ корректирующего звена вычтем из желаемой ЛАЧХ исходную.

Передаточная функция регулятора имеет вид (см. приложение):

, где

где, ; (см. приложение)


Произведём оценку точности и анализ качества скорректированной системы с помощью математического пакета МatLab.

>> g1=tf([49],[1,0])

Transfer function:

49

--

s

>> g2=tf([1],[0.01,1])

Transfer function:

1

----------

0.01 s + 1

>> g3=tf([1],[0.0016,1])

Transfer function:

1

------------

0.0016 s + 1

>> Gr=g1*g2*g3*g3

Transfer function:

49

-----------------------------------------------

2.56e-008 s^4 + 3.456e-005 s^3 + 0.0132 s^2 + s

>> margin(Gr);gridon

Запас по амплитуде увеличился почти в 9 раз и теперь составляет 17,3 дБ , запас по амплитуде составляет 57,8 градуса .

Введём в систему отрицательную обратную связь и оценим переходный процесс.


>> f=tf([1])

Transfer function:

1

>> G=feedback(Gr,f)

Transfer function:

----------------------------------------------------

2.56e-008 s^4 + 3.456e-005 s^3 + 0.0132 s^2 + s + 49

>> step(G);grid on

Из графика (рис.8)видно , что время перехода равно 0,15 секунды , а перерегулирование составляет примерно % , что не превышает заданных 5 %.

Проверим систему на устойчивость при помощи построения годографа Найквиста :

>> nyquist(Gr);grid on

Оценив характеристики скорректированной системы , делаем вывод :

сходящийся колебательный процесс (рис.8) и годограф Найквиста (рис.9) , не охватывающий точку (0,-j) свидетельствуют об устойчивости системы.

4. Синтез последовательного корректирующего звена

Структурная схема САУ при последовательной коррекции изображена на рис.10, где приняты следующие обозначения : W(s)-передаточная функция исходной системы ;

Wk(s)- передаточная функция корректирующего устройства .

Полагая , что передаточная функция скорректированной системы Wск(s) равна желаемой передаточной функции Wж(s) , можно записать

Реализация аналогового регулятора на пассивных RC-цепях.

Передаточная функция корректирующего звена имеет вид:

Т.к. , то данная ПФ может быть реализована при помощи схемы , изображённой на рис.11.

Произведём расчёт сопротивлений и ёмкости , а так же коэффициента усиления дополнительного усилителя . Расчёт устройства производится по соотношениям :

;

Пусть ёмкость конденсатора равна 10 мкФ ( модель К15П-1)

По таблице номиналов выбираем близкие по значению резисторы модели С1-1 R1 =39кОм , R2 =160Ом


Чтобы сделать коэффициент регулятора равным 2,02 , подберём коэффициент усиления дополнительного усилителя Куд=112.

Найдём постоянные времени с учётом номиналов найденных реальных конденсатора и резисторов :

Таким образом передаточная функция регулятора примет вид :

Реализация активного корректирующего звена на ОУ.

Принципиальная схема регулятора на ОУ приведена на рис.12.

Расчёт устройства производится по соотношениям :

Примем R1 =10 кОм , тогда


По таблице номиналов выбираем близкие по значению резисторы модели С1-1 и конденсаторы модели К15П-1 :

R2 = 4,7 кОм ; С2 = 0,33мкФ ; С1 = 39мкФ

Цифровой регулятор может быть получен из передаточной функции корректирующего устройства путём перевода её в дискретную форму с помощью аппроксимации Тустена и последующей записи разностного уравнения .

В схеме изображённой на рис.13 сигнал , поступающий в АЦП (аналого-цифровой преобразователь) преобразуется из аналоговой формы в цифровую ( дискретную) путём квантования непрерывной величины по времени ,затем сигнал поступает в D(z) (цифровая вычислительная машина),где производятся вычисления согласно разностному уравнению , после чего сигнал поступает в ЦАП ( цифровой аналоговый преобразователь), где преобразуется из цифровой в аналоговую форму

Период дискретности примем равным 0,0008с., т.е. Тs=0,0008 c.

>> Wk=tf([0.563479,2.21897,2.02],[0.0016,1,0])

Transfer function:

0.5635 s^2 + 2.219 s + 2.02

---------------------------

0.0016 s^2 + s

>> Wkd=c2d(Wk,0.0008,'tustin')

Transfer function:

282.2 z^2 - 563.5 z + 281.3

---------------------------

z^2 - 1.6 z + 0.6

Samplingtime: 0.0008

Преобразуем функцию в dsp-форму :

>> W=filt([282.2,-563.5,281.3],[1,-1.6,0.6],0.0008)

Transfer function:

282.2 - 563.5 z^-1 + 281.3 z^-2

-------------------------------

1 - 1.6 z^-1 + 0.6 z^-2

Sampling time: 0.0008

Получили передаточную функцию цифрового регулятора :

Теперь можно записать разностное уравнение в общем виде:

перемножив получим следующее:

Отсюда получаем следующее уравнение

Данное уравнение реализуется в виде компьютерной программы , и используется для управления цифровым контроллером ,который в свою очередь реализует коррекцию системы.


Заключение

В результате выполнения курсовой работы была выполнена задача синтеза корректирующего звена для исходной САР.

Для этого были решены следующие задачи: построена структурная схема нескорректированной системы и определены передаточные функции её звеньев, произведена оценка точности и анализ качества исходной системы (запаса устойчивости и быстродействия) с использованием пакета ControlSystemToolbox.

Также была построена желаемая ЛАЧХ, определены желаемые передаточные функции разомкнутой и замкнутой систем, после чего была произведена оценка показателей качества желаемой системы с использованием математического пакета MATLAB и синтез последовательного корректирующего устройства (регулятора), реализация корректирующего устройства в виде аналогового (активная и пассивная коррекции) и цифрового регуляторов , а также построение и описание функциональной схемы скорректированной системы (с приведением параметров САР и её показателей качества).

Физическая схема скорректированной САР приведена на рис. 22.

Спроектированная система автоматического регулирования устойчива и обладает показателями качества ,соответствующими требуемым в задании :перерегулирование 4 % .


Список используемой литературы

1. Бесекерский В.А., Попов Е.П. Теория автоматического управления - Изд.. 4-е, перераб. И доп. - СПб, Изд-во «Профессия», 2003

2. Ерофеев А.А. Теория автоматического управления: Учебник для втузов. -2-е изд., перераб. И доп. - СПб.: Политехника, 2003. - 302с: ил.

3. Синтез следящей системы автоматического управления: Метод. Указания к курсовой работе. Сост. В.И. Будин, О.Б. Сигова, - Самара, СамГТУ, 2003.-20с.

4. МедведевВ.С„ ПотёмкинВ.Т.Control System Toolbox. Matlab5 для студентов. - М.: ДИАЛОГ - МИФИ, 1999. - 287 с.

5. Лазарев Ю. Ф. Matlab5. х. - К.: Издательская группа ВНV, 2000. - 384с.

6. Дьяконов В.П. Simulink 4. Специальный справочник. - СПб: Питер, 2002. - 528с: ил.

7. Макаров И.М ., Менский Б.М. Линейные автоматические системы(справочный материал) -2-е изд., -М.: Машиностроение , 1982.-504с.,ил.

8. Ким Д.П. Теория автоматического управления. Т.1. Линейные системы.-

М.: ФИЗМАТЛИТ , 2003.-288 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита22:16:50 02 ноября 2021
.
.22:16:48 02 ноября 2021
.
.22:16:43 02 ноября 2021
.
.22:16:41 02 ноября 2021
.
.22:16:39 02 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Курсовая работа: Система автоматического регулирования давления в ресивере

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294145)
Комментарии (4230)
Copyright © 2005-2022 HEKIMA.RU [email protected] реклама на сайте