Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Дипломная работа: Операторы проектирования

Название: Операторы проектирования
Раздел: Рефераты по математике
Тип: дипломная работа Добавлен 12:01:51 14 августа 2007 Похожие работы
Просмотров: 53 Комментариев: 20 Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать

Министерство Образования Российской Федерации

Вятский Государственный Гуманитарный Университет

Математический факультет

Кафедра математического анализа и МПМ

Выпускная квалификационная работа

Операторы проектирования.

Выполнил студент 5курса

математического факультета

Лежнин В.В.

/подпись/


Научный руководитель:

Старший преподаватель кафедры математического анализа и МПМ

Гукасов А.К.

/подпись/


Рецензент:

Старший преподаватель кафедры математического анализа и МПМ

Подгорная М.И.

/подпись/


Допущена к защите в ГАК

Зав. кафедрой М.В. Крутихина

/подпись/ << >>

Декан факультета В.И. Варанкина

/подпись/ << >>

Киров

2003

Оглавление.

Введение. 2

Часть I . Основные понятия и предложения. 2

Часть II . Дополняемость в гильбертовых пространствах. 10

Часть III . Задача о дополняемости. 13

Литература. 15

Введение.

В данной работе рассматриваются операторы проектирования, которые являются частным случаев линейных операторов, их некоторые свойства, и рассматривается вопрос: как с помощью операторов проектирования можно выяснить дополняемо множество или нет. Так же освящается тема дополняемости в гильбертовых пространствах. Попутно для рассмотрения предлагаются некоторые определения и факты, на которые опираются нужные нам утверждения. К самостоятельно выполненным заданиям относятся доказательство замкнутости ядра (стр. 6, предложение 2), формула изменения коэффициентов Фурье при сдвиге на некоторое вещественное число и решение задачи о дополняемости.

Часть I . Основные понятия и предложения.

Определение. Метрику d на векторном пространстве X будем называть инвариантной, если d(x+z,y+z)=d(x,y), для любых x,y,z из X.

Определение. Пусть d – метрика на множестве X. Если каждая последовательность Коши сходится в X к некоторой точке, то d называется полной метрикой на X.

Определение. Векторное пространство X называется нормированным пространством, если каждому элементу x из X сопоставлено неотрицательное вещественное число, именуемое нормой x, и выполняются следующие условия:

1. £ + "x, yÎX.

2. = "xÎX, "a - скаляра.

3. > 0, если x¹0.

Примеры нормированных пространств.

1) l - нормированное пространство, в котором элементы – последовательности комплексных чисел x=(x, …,x, …), удовлетворяющие условию <¥,

норма в таком пространстве определяется ;

2) L(0,1) - нормированное пространство, состоящее из функций с интегрируемым квадратом на интервале (0, 1), удовлетворяющее условию dx < ¥, и норма определена как = .

3) С[0, 2p] – пространство непрерывных 2p периодических функций на отрезке [0, 2p]. Норма в нем определяется =

Определение. Пусть X, Y – два топологических линейных пространства. Линейным оператором, действующим из X в Y, называется отображение y = Ax, где x принадлежит X, а y принадлежит Y, удовлетворяющее условию

A(ax+bx) = aAx+bAx.

Определение. Оператор A называется непрерывным в точке x области определения, если для любой окрестности V точки y= Ax существует такая окрестность U точки x, что Ax принадлежит V, как только x принадлежит пересечению области определения и U. Оператор A называется непрерывным, если он непрерывен в каждой точке области определения.

Определение. Линейный оператор, действующий из Е в Е, называется ограниченным, если он определен на всем Е и каждое ограниченное множество переводит снова в ограниченное.

Предложение 1. Всякий непрерывный линейный оператор ограничен.

Доказательство.

Пусть М – подмножество ограниченного множества Е, а подмножество АМ множества Е не ограничено. Тогда в Е найдется такая окрестность нуля V, что ни одно из множеств АМ не содержится в V. То тогда существует такая последовательность х из М, что ни один из элементов Ах не принадлежит V, и получается, что х ® 0 в Е, но последовательность {Ах}не сходится к 0 в Е, а это противоречит непрерывности оператора А.

В нормированных пространствах определение ограниченности линейных операторов можно сформулировать так: оператор А ограничен, если существует такая постоянная С, что для всякого f из Е

.

Наименьшее из чисел С, удовлетворяющее этому неравенству, называется нормой оператора А и обозначается .

Определение. Пусть X - векторное пространство. Линейное отображение P:X → X называется проектором в пространстве X, если , т.е. P(P(x)) = Px для любого элемента x из X.

Свойства проекторов .

Пусть P проектор в X с ядром N(P) и образом R(P).

1. R(P) = N(I-P) = {xÎX, Px = x}, где I – тождественное отображение;

2. R(P)ÇN(P) = {0} и X = R(P)+N(P);

Доказательство 1.

а) Так как (I-P)P = IP- = P-P = 0, то R(P) содержится в N(I-P);

б) Если x принадлежит N(I-P), то x-Px = 0, следовательно, x = Px принадлежит R(P), значит N(I-P) содержится в R(P);

Таким образом, из а) и б) следует, что R(P) = N(I-P).

Доказательство 2.

Если x принадлежит пересечению R(P) и N(P), то x=Px=0, а следовательно, R(P) и N(P) пересекаются по {0};

Для любого x из X можно представить в виде x=Px+(x-Px), где Px принадлежит R(P) и x-Px принадлежит N(P), значит X=R(P)+N(P);

Определение. М – замкнутое подпространство топологического векторного пространства X. Если в X существует такое замкнутое подпространство N, что X=M+N и MÇN={0}, то говорят, что М дополняемо в X и что X является прямой суммой подпространств X=MÅN.

Определение. Топологическое векторное пространство X называется F-пространством, если топология порождается некоторой полной инвариантной метрикой.

Теорема o замкнутом графике.

Предположим, что X и Y являются F-пространствами, отображение Т:X→Y линейно и множество G={(x, Tx): xÎX} (его график) замкнуто в X´Y. Тогда Т – непрерывно.

Предложение 2. Пусть Ù - линейный функционал на топологическом векторном пространстве X. Допустим, что Ùx ¹0 для некоторого x из X.

Тогда если Ù непрерывен, то ядро N(Ù) замкнуто в X.

Доказательство.

Так как N(Ù) = Ù({0}), а {0} – замкнутое множество поля скаляров (как любое одноточечное подмножество), то тогда непрерывность Ù влечет замкнутость ядра (как прообраз замкнутого множества при непрерывном отображении).

Теорема 1.

а) Если Р – непрерывный проектор в топологическом векторном пространстве X, то X представляется в виде прямой суммы подпространств X=R(P)ÅN(P);

б) Обратно: если Х является F-пространством и X представляется в виде прямой суммы подпространств Х=АÅВ, то проектор Р с образом А и ядром В непрерывен.

Доказательство:

а) Так как Р и I-P непрерывны, то подпространства N(P) и R(P)=N(I-P) замкнуты (см. предложение 2), значит по второму свойству проекторов X=R(P)ÅN(P);

Чтобы доказать б) достаточно проверить, что проектор Р удовлетворяет условиям теоремы о замкнутом графике .

Пусть последовательности x→x и Px→y.

Так как Px принадлежит А, А – замкнуто, следовательно y принадлежит A, а значит y = Py.

Аналогично x- Px принадлежит В, В – замкнуто, следовательно x-y принадлежит B, значит Py = Px поэтому y = Px. Получили, что точка (x, y) принадлежит G (см. теорему о замкнутом графике). Отсюда вытекает, что проектор Р непрерывен.

Определение . Топологической группой называется группа G, снабженная такой топологией, относительно которой групповые операции в G непрерывны.

Расшифровка этого определения состоит в том, что постулируется непрерывное отображение j:G´G®G, определенного равенством: j(x,y)=xy.

Определение. Топологическая группа G, топология которой компактна, называется компактной группой.

Определение . Топологическое векторное пространство X называется локально выпуклым, если в нем всякое непустое открытое множество содержит непустое выпуклое открытое подмножество.

Определение. Пространство X называется пространством Фреше , если оно является локально выпуклым F-пространством.

Определение. Предположим, что топологическое векторное пространство X и топологическая группа G связаны следующим образом: кждому элементу s из G сопоставлен непрерывный линейный оператор T:X®X, причем

T = TT, где s, t принадлежат G

и отображение (s, x) ® Tx прямого произведения G´X в пространстве X непрерывно. В этом случае говорят, что группа G непрерывно и линейно действует в пространстве X.

Теорема 2 .

Пусть Y – дополняемое подпространство Фреше Х, и пусть компактная группа G непрерывна и линейно действует на Х, причем Т(Y)ÌY для любого sÎG. Тогда существует непрерывный проектор Q пространства Х на подпространство Y, коммутирующий со всеми операторами Т.

Лемма Фату. Пусть на множестве E задана последовательность измеримых, почти всюду конечных функций f (x), которая сходится по мере к некоторой почти всюду конечной функции f . Тогда

dm £ dm

Пример недополняемого подпространства.

Рассмотрим подпространство Y=H пространства Х=L, где L- пространство всех суммируемых функций на комплексной плоскости, а H состоит из всех функций L, для которых (n)=0, при всех n<0. (n) обозначает n-ый коэффициент Фурье функции f и вычисляется:

(n)=edx, (n=0,1, 2, …). (1)

(для простоты обозначается: f(x)=f(e )).

В качестве группы G возьмем мультипликативную группу всех комплексных чисел, по модулю равных 1, и сопоставим каждому элементу

e ÎG оператор сдвига t, полагая, что

(tf)(x) = f(x+s), где s – некоторое вещественное число. (2)

Теперь посмотрим, как изменяются коэффициенты Фурье при таком сдвиге: ()(n) =e dx.

Произведем замену: x+s = t Þ x = t-s. Тогда

()(n)=ed(t-s) =

= eedt=eedt=e (n),

то есть (tf)(n)= e (n). (3).

Так как e ÎG, то t(H) = H для любого вещественного s.

Если бы подпространство H было дополняемо в L, то из Т2. следовало бы существование такого непрерывного проектора Q пространства L на H, что tQ = Qt для любого вещественного s. (4).

Найдем вид проектора. Положим e(x)=e . Тогда te=ee, а так как оператор Q линеен, то

Qte = eQe. (5).

Из (4) и (5) следует, что

(Qe)(x-s) = e (Qe)(x). (6).

Пусть С = (Qe)(0). При Q = 0 соотношение (6) имеет вид

Qe = Ce. (7).

Воспользуемся тем, что образом оператора Q служит подпространство Н. Так как Qe принадлежит H для любого n, то из (7) следует, что

С = 0 для любого n<0. Так как Qf = f для любого f из H, то С = 1 при любом n³0.

Таким образом, проектор Q должен являться «естественным», то есть его действие сводится к замене нулями всех коэффициентов Фурье с отрицательными номерами:

Q(e)=e. (8).

Рассмотрим функцию f (x) = e, (0<r<1), (9).

которая представляет собой ядро Пуассона: , в частности f>0. Поэтому

= dx = dx = 1 для любого r. (10) Но (Qf)(x) = e = (11).

Так как dx = ¥, то из леммы Фату следует, что ® ¥, при

r ® 1. В силу (10) это противоречит непрерывности оператора Q.

Таким образом, доказано, что H недополняемо в L.

Часть II . Дополняемость в гильбертовых пространствах.

Гильбертово пространство.

Комплексное векторное пространство Н называется пространством с внутренним произведением (унитарное пространство), если каждой упорядоченной паре векторов x,y из Н сопоставлено комплексное число (x,y), называемое скалярным и:

а) (y,x)=, "x, yÎH;

b) (x+y,z)=(x+z)+(y+z), "x, y, zÎH;

c) (ax,y)=a(x,y), "x, yÎH, "aÎC;

d) (x,x)³0, "xÎH;

e) (x,x)=0 Û x=0, "xÎH;

Если (x,y) = 0, то говорят, что x ортогонален y (обозначение x^y).

Если Е подмножество Н, F подмножество H, то Е^F обозначает, что (x,y) = 0 для любых x из E и любых y из F.

Через Е обозначаются все y из H, ортогональные каждому из векторов x из E.

Нормой в пространстве Н называется число .

Если полученное нормированное пространство является полным, то оно называется гильбертовым пространством.

Примеры гильбертовых пространств.

1) l - комплексное гильбертово пространство, в котором скалярное произведение определяется формулой (x, y) = ;

2) L(0,1) - гильбертово пространство, в котором скалярное произведение определено формулой

(f, g) = dx.

Теорема3:

М – замкнутое подпространство гильбертова пространства Н, следовательно H можно представить в виде прямой суммы M и М (Н=МÅМ, М - ортогональное дополнение к М).

Доказательство:

Если Е подмножество Н, то из линейности скалярного произведения (x,y) по x следует, что Е является подпространством в Н. Допустим, что элементы g принадлежат Е и сходятся к g. Тогда для любого f из E

(g, f) = = 0, и потому g тоже входит в Е, значит Е - замкнутое подпространство.

(1) Если х принадлежит М и х принадлежит М, то (х, х) = 0, а это будет тогда и только тогда, когда х = 0, следовательно МÇМ={0}.

(2) Пусть х принадлежит Н.

Рассмотрим множество х-М = {х-х: хÎМ}, причем х такой, что он минимизирует величину . Пусть х = х-х, следовательно, £ для любых y из М, значит, х принадлежит М, поэтому для любого х из Н х можно представить в виде х = х, где х из М и х из М.

Из (1) и (2) следует, что Н представимо в виде прямой суммы М и М Н=МÅМ, следовательно любое подмножество в гильбертовом пространстве дополняемо.

Примеры дополняемых подпространств в гильбертовом пространстве.

1) в l рассмотрим элементы x = (x, …,x, …), у которых x= 0 при четных n и x произвольные при n нечетных. Эти элементы образуют в l замкнутое подпространство. Назовем его X.

Рассмотрим также элементы y = (y, …, y, …), у которых y произвольные при четных n, и y= 0 при нечетных n. Эти элементы образуют замкнутое подпространство в l , и при этом это подпространство является ортогональным дополнением к X, так как их скалярное произведение равно 0. Следовательно, по Т3. X дополняемо в H с помощью X.

2) L(0,1).

Пусть X – подпространство L(0,1), состоящее из тех функций L(0,1), которые обращаются в 0 на интервале (0, а].

Пусть Y – подпространство L(0,1), состоящее из тех функций L(0,1), которые в ноль не обращаются на интервале [a, 1).

Тогда Y является ортогональным дополнением X, так как их скалярное произведение равно 0, а значит X дополняемо в L(0,1) с помощью Y.

Часть III . Задача о дополняемости.

Пусть С[0, 2p] - множество непрерывных 2p периодических функций на отрезке [0, 2p].

Пусть Е – множество четных чисел и пусть

С = {f(x)Î С: (n) = 0 "nÏE}.

Требуется доказать, что С дополняемо в С[0, 2p].

Доказательство:

Чтобы доказать требуемое, необходимо найти такой непрерывный проектор, который бы отображал множество С[0, 2p] на С(Т1.), таким образом, чтобы коэффициенты Фурье функций, стоящие на нечетных номерах, отображались бы в 0, а на четных оставались бы без изменения.

Рассмотрим оператор P = (t+I), где t - оператор сдвига на p, а I - тождественное отображение.

t ограничен, так как мы имеем дело с 2p периодическими функциями, так как

= = 1, то есть С = 1.

А раз он ограничен, то следовательно и непрерывен (предложение 1).

I - тоже непрерывен.

Теперь посмотрим, как изменятся коэффициенты Фурье функций при таком отображении.

1) n = 2k-1, где к – целое.

(()(2k-1)+()(2k-1)) =

= (e (2k-1)+ (2k-1)) = (2k-1)( e +1). (*)

Так как e =cos j+isin j, значит e = cos ((2k-1)p)+isin((2k-1)p).

При любом k – целом выражение cos ((2k-1)p)+isin((2k-1)p) = -1, а, следовательно, и выражение (*) принимает значение 0. Мы показали, что коэффициенты Фурье функций, стоящие на нечетных номерах при таком отображении обращаются в 0.

2) n=2k, где k – целое.

(()(2k)+( )(2k)) = (e (2k)+ (2k)) =

= (2k)( e +1). (**)

При любом k – целом выражение cos (2kp)+isin(2kp) = 1, а следовательно и выражение (**) не изменяет своего значения, то есть равно (2k). Мы показали, что коэффициенты Фурье функций, стоящие на четных номерах при таком отображении не изменяются, то есть оператор Р действительно является проектором.

Таким образом, нашелся такой непрерывный проектор P: С[0, 2p]® С, следовательно С дополняемо в С[0, 2p].

Литература.

1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М., Наука. 1989.

2. Рудин Уолтер. Функциональный анализ. М., Наука. 1975.

3. Вулих Б.З. Краткий курс в теорию функций вещественной переменной. М., Наука. 1973.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита23:02:33 02 ноября 2021
.
.23:02:31 02 ноября 2021
.
.23:02:29 02 ноября 2021
.
.23:02:27 02 ноября 2021
.
.23:02:26 02 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Дипломная работа: Операторы проектирования

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(288208)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте