МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ
РОСИЙСКОЙ ФЕДЕРАЦИИ
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ПУТЕЙ СООБЩЕНИЯ (МГУПС)
Кафедра машиноведения и сертификации
КУРСОВАЯ РАБОТА
по дисциплине
Теория механизмов и машин
МОСКВА
Содержание
1. Расчёт недостающих размеров механизма
2. Кинематическое исследование механизма компрессора
2.1 Построение плана скоростей для заданного 5-го положения
2.2 Определение угловых скоростей
2.3 Определение планов ускорений
2.4 Определение угловых ускорений
2.5 Определение сил полезного сопротивления
2.6 Построение плана сил для группы 2-3
2.7 Построение плана сил для группы 4-5
2.8 Построение плана сил для кривошипа
3. Синтез зубчатого зацепления
3.1 Расчёт основных параметров зубчатого зацепления
Выводы
1. Расчёт недостающих размеров механизма
Задана длина кривошипа lАС
=r1
=0,038 задаём ОА=ОС=38
Определяем масштабный коэффициент Кl
:
Kl
= = ( );
По известному параметру механизма = находим l2
, где = ;
l2
= =l4
= (м);
lав
=lас
= = (м);
Так как механизм находится в 5 положении, то, деля окружность на 12 частей, т.е. на каждую часть приходится по 30 , задаём нужное положение.
2. Киниматическое исследование механизма компрессора
2.1 Построение плана скоростей для заданного 5-го положения.
 ,
угловая скорость коленчатого вала
,
где мин-1
– частота вращения коленчатого вала.
 ;
 ;
Определяем масштабный коэффициент скорости. Для этого выбираем произвольно отрезок PVa
, на которой изображаем скорость в точке А.
PVa
=80 (мм)
 ;
Определяем скорость в точке В. Так как шатун АВ совершает сложное плоскопараллельное движение, то скорость любой точки шатуна можно представить состоящую из двух скоростей:
1. Скорость любой точки поступательного движения (Va
)
2. Скорость другой точки во вращательной движении относительно точки А. (Vва
)
Составим векторное уравнение:
  
= +
= 
=  ;
=
= ;
=
= 
=
= ;
Находим из отношения:

(мм);
Находим из отношения:

(мм);
Находим скорости в точках и :

 ;

 ;
2.2 Определение угловых скоростей

(с-1
);

(с-1
);
2.3 Определение планов ускорений
Определяем ускорение в точке А.
, так как , то ,  
 ;
Находим масштабный коэффициент ускорения.

 ;
Уравнения для определения ускорения в точке будет следующем.
  , где
-нормальное ускорение,
-тангенциальное ускорение;
=
= ;
;
(мм);
= ;
= ;
 ;
  ;
= ;
= ;
;
(мм);
 ;
 ;
 ;
; ;
(мм);
(мм);
(мм);
(мм);
2.4 Определение угловых ускорений
( );
 ;
2.5 Определение сил полезного сопротивления
;
(мм); (мм);
(м);
;
;
ИНДИКАТОРНАЯ ДИАГРАММА КОМПРЕССОРА.
максимальное ход поршня.
расстояние от поршня до В.М.Т.
давление в поршне.
 - максимальное давление воздуха.
Составим таблицу поведения компрессора при всасывании и при нагнетании и по полученным данным строим векторную диаграмму компрессора.
При всасывании:
 |
0 |
0,1 |
0,2 |
0,3 |
0,4 |
0,5 |
0,6 |
0,7 |
0,8 |
0,9 |
1 |
 |
При нагнетании:
 |
0 |
0,1 |
0,2 |
0,3 |
0,4 |
0,5 |
0,6 |
0,7 |
0,8 |
0,9 |
1 |
 |
; ;
,
где -диаметр цилиндра,
- сила, определяемая из индикаторной диаграммы компрессора для соответствующего положения механизма.

(Н);
2.6 Построение плана сил для группы 2-3.
а) Силы тяжести.
(Н); (мм);
(Н); (мм);
б) Силы инерции
(Н); (мм);
(Н); (мм);
 ;
где - ускорение центра масс, полученное из плана скоростей.
Силы тяжести приложены в центрах масс звеньев. Силы инерции приложены в центре масс и направлены противоположно ускорениям соответствующих центров масс. К звеньям необходимо приложить момент инерции
в) Момент силы инерции.
 ;
Составим уравнение равновесия на 2-е и 3-е звено:

Мы не можем решить это уравнение, поэтому в нём 3 неизвестных. Для того, чтобы его решить найдём из уравнения моментов сил для звена 2 относительно 

(Н);
Получаем что,

(Н);
(Н);
2.7 Построение плана сил для группы 4-5
а) Силы тяжести:
(Н) (мм);
б) Силы инерции:
(Н); (мм);
(Н); (мм);
 ;
в) Момент силы инерции:
 ;
Составим уравнение равновесия на 5-е и 4-ое звено:
;
Мы не можем решить это уравнение, поэтому в нём 3 неизвестных. Для того, чтобы его решить найдём из уравнения моментов сил для звена 4 относительно .
;
(Н);

(Н);
(Н);
2.8 Построение плана сил для кривошипа
; 
; 
Условие равновесия системы:
Найдём уравновешивающий момент.




3. Синтез зубчатого зацепления
3.1 Расчёт основных параметров зубчатого зацепления
Исходные данные: угол профиля ,угол зацепления , коэффициент смещения ; ; ; Модуль зацепления (мм)
Межосевое расстояние.
(мм);
Делительные диаметры зубчатых колёс.
(мм);
(мм);
Делительное межосевое расстояние.
(мм);
Коэффициент воспринимаемого смещения.
;
Коэффициент уравнительного смещения.
(мм);
Радиус начальной окружности.
(мм);
(мм);
Радиусы вершин зубьев.
(мм);
(мм);
Радиусы впадин.
(мм);
(мм);
Высота зуба.
(мм);
Толщина зубьев по делительной окружности.
(мм);
(мм);
Радиусы основных окружностей.
(мм);
(мм);
Углы профиля в точке на окружности вершин.
;
;
Коэффициент торцевого перекрытия.
.
Выводы
В ходе данной курсовой работы бал исследован механизм компрессора. В ходе кинетостатического исследования были построены планы сил, ускорений и скоростей, определены скорости и ускорения отдельных частей механизма.
Также нами был проведён геометрический синтез зубчатого зацепления, рассчитаны основные параметры зубчатой передачи.
|