Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Роль гумуса в почве

Название: Роль гумуса в почве
Раздел: Рефераты по ботанике и сельскому хозяйству
Тип: реферат Добавлен 10:10:14 10 ноября 2010 Похожие работы
Просмотров: 1862 Комментариев: 22 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

ГОУ ВПО

«СУРГУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Ханты-Мансийского автономного округа – Югры»

Кафедра химии

Реферат на тему: Гумус

Выполнила: студентка гр. 0471

Гельвер А.

Проверил преподаватель:

Цейтлин В.А.

г. Сургут 2009 год


Содержание

Введение

1) Гумус

2) Гумусовые кислоты

3) Гумификация

4) Свойства гуминовых веществ

5) Химическая структура гуминовых веществ

Список литературы

Введение

Гумус — это совокупность органических соединений, находящихся в почве, но не входящих в состав живых организмов или их остатков, сохраняющих анатомическое строение. Гумус составляет 85-90 % органического вещества почвы и является важным критерием при оценке её плодородности.

Гумус составляют индивидуальные (в том числе специфические) органические соединения, продукты их взаимодействия, а также органические соединения, находящиеся в форме органо-минеральных образований.


1 Гумус

Огромное многообразие специфических гумусовых веществ делят условно (по их свойствам) на три большие группы - гуминовые кислоты, фульвокислоты, гумин - или, иначе, это - гуминовые соединения. По-другому гуминовые соединения называют по аналогии с солями (от производных кислот): гуматы и фульваты, подчеркивая тем их происхождение. Но все их можно объединить - у них сходные свойства, все они соли кислот. Основное отличие фульвокислот от гуминовых - их резко выраженная кислая реакция (рН 2,6 -2,8). При такой реакции фульвокислоты растворяют большинство минералов, связывая их, и выносят питательные вещества в нижележащие слои, чем снижают почвенное плодородие для растений; их соли практически не доступны для растений. Но это частности.

Образование гумуса - очень сложный процесс биологических и биохимических превращений остатков растительного (а также животного) происхождения в почве, главным образом в третьем, заключительном слое листового и травяного опада - гумусовом горизонте.

Таким образом, гумус - это термин, объединяющий огромный комплекс или группу химических веществ, в состав которых входит как органическая часть (гуминовые и фульвокислоты), так и неорганическая составляющая - химические элементы неорганического происхождения, или проще сказать, минералы (входящие в состав гуматов и фульватов).

Однако, состав гумуса, а по-другому сказать - гуминовых кислот и их солей, гуматов - будет зависеть в большей степени не от того, какой вид микробов их "производит" благодаря своей ферментативной деятельности, а от состава детрита (разлагающихся органических остатков) и той минеральной части почвы, где эти процессы происходят.

2 Гумусовые кислоты

Гуминовые вещества – это основная органическая составляющая почвы, воды, а также твердых горючих ископаемых. Они образуются при разложении растительных и животных остатков под действием микроорганизмов и абиотических факторов среды. В. И. Вернадский в свое время называл гумус продуктом коэволюции живого и неживого планетарного вещества. Более развернутое определение уже в 90-х годах XX века дал профессор кафедры химии почв МГУ Д. С. Орлов: «Гуминовые вещества — это более или менее темноокрашенные азотсодержащие высокомолекулярные соединения, преимущественно кислотной природы». Из этого следует только один вывод: вплоть до сегодняшнего дня определение гуминовых веществ имело скорее философский, чем химический смысл. Причины кроются в специфике образования и строения этих соединений.

Гуминовые и фульвокислоты, объединяемые под названием гумусовые кислоты, нередко составляют значительную долю органического вещества природных вод и представляют собой сложные смеси биохимически устойчивых высокомолекулярных соединений.

Главным источником поступления гумусовых кислот в природные воды являются почвы и торфяники, из которых они вымываются дождевыми и болотными водами. Значительная часть гумусовых кислот вносится в водоемы вместе с пылью и образуется непосредственно в водоеме в процессе трансформации "живого органического вещества".

Наличие в структуре фульво- и гуминовых кислот карбоксильных и фенолгидроксильных групп, аминогрупп способствует образованию прочных комплексных соединений гумусовых кислот с металлами. Некоторая часть гумусовых кислот находится в виде малодиссоциированных солей - гуматов и фульватов. В кислых водах возможно существование свободных форм гуминовых и фульвокислот.

Гуминовые кислоты содержат циклические структуры и различные функциональные группы (гидроксильные, карбонильные, карбоксильные, аминогруппы и др.). Молекулярная масса их колеблется в широком интервале (от 500 до 200 000 и более). Относительная молекулярная масса условно принимается равной 1300-1500.

Фульвокислоты являются частью гумусовых кислот, не осаждающихся при нейтрализации из раствора органических веществ, извлеченных из торфов и бурых углей обработкой щелочью. Фульвокислоты представляют соединения типа оксикарбоновых кислот с меньшим относительным содержанием углерода и более выраженными кислотными свойствами. Хорошая растворимость фульвокислот по сравнению с гуминовыми кислотами является причиной их более высоких концентраций и распространения в поверхностных водах. Содержание фульвокислот, как правило, превышает содержание гуминовых кислот в 10 раз и более.

3 Гумификация

Растительный опад, продукты метаболизма и останки животных становятся пищей для разнообразных организмов, обитающих в почве.

Одна часть отмершей биоты (50–75%) минерализуется, а другая (25–50%) подвергается биохимическим ферментативным процессам разложения и окисления – гумифицируется. В ходе гумификации происходит синтез сложных органических соединений, в почве накапливается гумус, «природное тело, образующееся в природе везде, где только растительные и животные останки подвергаются разложению». В гумусе доминируют вещества кислотной природы – гумусовые кислоты. В среднем на каждый квадратный километр поверхности суши ежегодно поступает 33–168 т гумусовых кислот .

Со временем гумусовые вещества преобразуются, окисляясь, в конечном итоге, до углекислого газа и воды. Вместе с тем это процесс весьма длительный, вещества гумусовой природы демонстрируют высокую устойчивость к биохимической и термической деструкции. Гумусовые вещества в растворах не претерпевают заметных изменений в течение нескольких лет, а микроорганизмам требуется больше месяца, чтобы уменьшить вдвое их концентрацию.

Как результат, они способны довольно долго сохраняться и накапливаться в естественных условиях. Так, данные радиоуглеродного анализа, свидетельствуют, что возраст гумусовых кислот в почвах колеблется от 500 до 5000 лет, а во взвесях речных осадков – от 1500 до 6500 лет, а их доля в органическом веществе почв и поверхностных вод составляет 60–90%.

Важно отметить, что путь преобразования отмершей биоты – минерализация или гумификация – зависит преимущественно от почвенно-климатических условий. В теплом и влажном климате процессы окисления происходят очень быстро и почти весь растительный опад минерализуется, а гумус в почве не накапливается. В холодном климате трансформация опада замедлена, да и количество его невелико, и содержание гумуса в почве мало. Оптимальные условия для гумификации и сохранения гумусовых веществ в почвах – умеренный климат без переувлажнения.

• Гумификация – процесс, который происходит всюду, где есть органические остатки и микроорганизмы;

• ежегодная продукция гумусовых кислот достигает миллиардов тонн;

• гумусовые кислоты в высоких концентрациях присутствуют в природных водах и почвах.

Роль гумусовых кислот определяется особенностями их химического строения. В результате гумификации в молекулах гумусовых кислот появляются группировки, обладающие свойствами слабых кислот. Эти группы диссоциируют, давая ионы водорода и отрицательно заряженные ионы (анионы). Анионы же, реагируя с положительно заряженными ионами металлов, образуют особый тип веществ – координационные соединения (комплексы), причем комплексы большинства металлов с гумусовыми кислотами отличаются высокой прочностью.

В присутствии гумусовых кислот концентрация ионов металлов, существующих в виде комплексов, намного превышает концентрацию свободных ионов, и без учета комплексообразующей роли гумусовых кислот невозможно понять процессы, происходящие в природных системах.

В процессах комплексообразования проявляется противоположная геохимическая роль различных фракций гумусовых кислот.

Образование гуминовых веществ, или гумификация, — это второй по масштабности процесс превращения органического вещества после фотосинтеза. В результате фотосинтеза ежегодно связывается около 50·109 т атмосферного углерода, а при отмирании живых организмов на земной поверхности оказывается около 40·109 т углерода. Часть отмерших остатков минерализуется до СO2 и Н2O, остальное превращается в гуминовые вещества. По разным источникам, ежегодно в процесс гумификации вовлекается 0,6–2,5·109 т углерода.

В отличие от синтеза в живом организме, образование гуминовых веществ не направляется генетическим кодом, а идет по принципу естественного отбора — остаются самые устойчивые к биоразложению структуры. В результате получается стохастическая, вероятностная смесь молекул, в которой ни одно из соединений не тождественно другому. Таким образом, гуминовые вещества — это очень сложная смесь природных соединений, не существующая в живых организмах.

4 Свойства гуминовых веществ

История изучения гуминовых веществ насчитывает уже более двухсот лет. Впервые их выделил из торфа и описал немецкий химик Ф. Ахард в 1786 году. Немецкие исследователи разработали первые схемы выделения и классификации, а также ввели и сам термин — «гуминовые вещества» (производное от латинского humus — «земля» или «почва»). В исследование химических свойств этих соединений в середине XIX века большой вклад внес шведский химик Я. Берцелиус и его ученики, а потом, в XX веке, и наши ученые-почвоведы и углехимики: М. А. Кононова, Л. А. Христева, Л. Н. Александрова, Д. С. Орлов, Т. А. Кухаренко и другие.

Фундаментальные свойства гуминовых веществ — это нестехиометричность состава, нерегулярность строения, гетерогенность структурных элементов и полидисперсность. Когда мы имеем дело с гуминовыми веществами, то исчезает понятие молекулы — мы можем говорить только о молекулярном ансамбле, каждый параметр которого описывается распределением. Соответственно, к гуминовым веществам невозможно применить традиционный способ численного описания строения органических соединений — определить количество атомов в молекуле, число и типы связей между ними. В какие-то моменты ученым, наверное, казалось, что работать с этими веществами совсем невозможно — они как «черный ящик», в котором все происходит непредсказуемо и каждый раз по-иному.

Чтобы хоть как-то упростить систему, исследователи предложили способ классификации гуминовых веществ, основанный на их растворимости в кислотах и щелочах. Согласно этой классификации, гуминовые вещества подразделяют на три составляющие: гумин — неизвлекаемый остаток, не растворимый ни в щелочах, ни в кислотах; гуминовые кислоты — фракция, растворимая в щелочах и нерастворимая в кислотах (при рН < 2); фульвокислоты — фракция, растворимая и в щелочах, и в кислотах. Гуминовые и фульвокислоты, взятые вместе, называют «гумусовыми кислотами». Это наиболее подвижная и реакционноспособная компонента гуминовых веществ, активно участвующая в природных химических процессах.

По мере погружения в «молекулярный хаос» гуминовых веществ химикам открылось то, что уже давно было известно почвоведам, — хаос только кажущийся. Так, например, диапазон вариаций атомных отношений основных составляющих элементов (C, H, O и N) не столь уж широк. При этом он отчетливо зависит от источника происхождения гуминовых веществ. Максимальное содержание кислорода и кислородсодержащих функциональных групп наблюдается в веществах, полученных из воды, и дальше их содержание снижается в ряду: «вода—почва—торф—уголь». В обратной последовательности увеличивается содержание ароматического углерода.

Выяснилась еще одна закономерность. У всех гуминовых веществ (не важно, какого происхождения) единый принцип строения. У них есть каркасная часть — ароматический углеродный скелет, замещенный функциональными группами. Среди заместителей преобладают карбоксильные, гидроксильные, метоксильные и алкильные группы. Помимо каркасной части, у гуминовых веществ есть и периферическая, обогащенная полисахаридными и полипептидными фрагментами.

Важная характеристика вещества — его химические свойства, то есть способность вступать в реакции с другими соединениями. Спектр реакций, в которые могут вступать гуминовые вещества, очень широк, особенно это касается их наиболее реакционноспособной части — гумусовых кислот. Благодаря карбоксильным, гидроксильным, карбонильным группам и ароматическим фрагментам (рис. 1) гумусовые кислоты вступают в ионные, донорно-акцепторные и гидрофобные взаимодействия. Гуминовые вещества способны связывать различные классы экотоксикантов, образуя комплексы с металлами и соединения с различными классами органических веществ. Тем самым они выполняют функцию своеобразных посредников, смягчающих действие загрязнений на живые организмы.


Рис. 1. Химические свойства гумусовых кислот

5 Химическая структура гуминовых веществ

По химической структуре гуминовые вещества - высокомолекулярные (молекулярная масса 1300-1500) конденсированные ароматические соединения, в которых установлено наличие фенольных гидроксилов, карбоксильных, карбонильных и ацетогрупп, простых эфирных связей и др.

Состав природных ГВ весьма нестабилен. Важнейшая особенность ГВ - их разнообразие в природе, о чем можно судить не только по элементному составу, но и по набору функциональных групп и другим свойствам.

Любые ГВ содержат большой набор функциональных групп, они полифункциональны. Их молекулы содержат карбоксильные группы -СООН, фенольные -ОН, хинонные =С=О, аминогруппы -NH2 и др. Их количество, во-первых, велико, во-вторых, они распределены неравномерно по молекулам различного размера, и даже молекулы одного размера могут различаться по содержанию функциональных групп. Более того, молекулы ГВ различаются по количеству входящих в их состав остатков аминокислот (всего их 17-20), по количеству углеводных остатков и характеру их расположения.

Содержание функциональных групп, выраженное в ММ колеблется в гуминовых кислотах в следующих пределах: -СООН - 1500-5700, кислые -ОН - 2100-5700, слабокислые и спиртовые -ОН - 200-4900, хиноидные -С=О - 100-5600, кетонные -С=О - около 1700, -ОСН3 - 300-800. Кроме того, большую роль играют группы -NН2 .

Чтобы составить ясное представление о построении молекул ГВ, необходимо определить, из каких фрагментов они построены и что лежит в их основе. Для этого прибегают к дроблению больших молекул на составные части, что возможно двумя способами:

1) относительно мягкий - гидролиз растворами кислот или щелочей;

2) жесткий - окисление ГВ растворами марганцевокислого калия или окисью меди.

При гидролизе в раствор переходят, отделившись от молекулы ГВ, низкомолекулярные фрагменты, аминосахара и моносахариды. Аминокислот бывает от 17 до 22, все они альфа-аминокислоты, те же, что есть в растениях, бактериальной плазме, причем примерно в тех же соотношениях.

Точных молекулярных формул для любых ГВ не существует, все предложенные варианты имеют характер схем, они гипотетичны, поскольку учитывают только состав соединений и некоторые их свойства, тогда как расположение атомов и атомных групп остается при этом неизвестным. Несмотря на это, попыток составления молекулярных формул ГВ в истории науки было немало: сейчас насчитывается не один десяток таких формул, часть которых имеет только характер блок-схем, а часть отражает более или менее реально состав и свойства гуминовых кислот. Негативные результаты при попытках составления структурных формул ГВ объясняются тем, что последние не образуют кристаллов, имеют переменный состав и полидисперсны даже в наиболее однородных препаратах. Получить мономолекулярные фракции ГВ пока не удалось. Поэтому к ним оказались неприменимыми те методы и приемы, которые обычно используют для создания формул природных и высокомолекулярных биоорганических молекул.

Рис. 2. Гипотетический структурный фрагмент гумусовых кислот почв (Кляйнхемпель, 1970). Изображение: «Химия и жизнь»


Заключение

Гуминовые вещества есть почти повсюду в природе. Их содержание в морских водах 0,1–3 мг/л, в речных — 20 мг/л, а в болотах — до 200 мг/л. В почвах гуминовых веществ 1–12%, при этом больше всего их в черноземах. Лидеры по содержанию этих соединений — органогенные породы, к которым относятся уголь, торф, сапропель, горючие сланцы.

Наличие гумуса свидетельствует о том, насколько почва живая. Чем больше гумуса, тем лучше водный, воздушный и тепловой режимы плодородного слоя земли, тем насыщеннее этот слой основными элементами питания, тем активнее идет в нем процесс создания живого из неживого.

В почвообразовании перегной или гумус накапливается в результате разложения остатков растений и животных. Растительные остатки так же формируют механическую структуру, придают почвам рыхлость и лёгкость, влагоёмкость. В пустынях, где отсутствует растительность, почвы сыпучие, песчаные и песчинки не связаны между собой.


Список литературы

1) Орлов Д.С. Гуминовые вещества в биосфере // Статьи Соровского Образовательного журнала в текстовом формате. Химия. - МГУ им. М.В. Ломоносова

2) Химическая энциклопедия в 5 томах. Т.1. - М.: «Сов. энциклопедия», 1988. - С.618..

3) Орлов Д.С., Лозановская И.Н., Попов П.Д. Органическое вещество почвы и органические удобрения. М.: Изд-во Моск. Ун-та, 1985, 97с

4) http:// ecolife.org.

5) http://universitates.kharkov.ua

6) http://ecology.sci-lib.com

7) http://biology.krc.karelia.ru

8) http://elementy.ru

9) Орлов Д.С. Гуминовые кислоты почв. - М.: Изд.МГУ, 1974. – 332

10) http://pochva-all.ru

11) http://green-dale.ru

12) Тейт Р. Органическое вещество почвы. - М.: Мир, 1991. - 400 с.

13) http://revolution.

14) Гришина Л.А. Гумусообразование и гумусное состояние почв. М., 1986. 242 с.

15) Орлов Д.С., Щербенко О.В. Гуминовые вещества. -Киев: Наук. думка, 1995. - 304 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита01:03:20 03 ноября 2021
.
.01:03:16 03 ноября 2021
.
.01:03:14 03 ноября 2021
.
.01:03:13 03 ноября 2021
.
.01:03:11 03 ноября 2021

Смотреть все комментарии (22)
Работы, похожие на Реферат: Роль гумуса в почве

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294282)
Комментарии (4230)
Copyright © 2005-2022 HEKIMA.RU [email protected] реклама на сайте