Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Моделирование дискретной случайной величины по геометрическому закону распределения

Название: Моделирование дискретной случайной величины по геометрическому закону распределения
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 09:34:34 01 июня 2010 Похожие работы
Просмотров: 312 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Московский авиационный институт

/государственный университет/

Филиал «Взлет».

Курсовая работа

по Теории вероятности и математической статистике

Выполнил: студент группы

Р 2/1 Костенко В.В.

Проверил: Егорова Т.П.

г.Ахтубинск 2004 г.

Содержание

Задание №1: Проверка теоремы Бернулли на примере моделирования электрической схемы. Распределение дискретной случайной величины по геометрическому закону распределения

Задание №2: Смоделируем случайную величину, имеющую геометрический закон распределения случайной величины

Задание №3: Проверка критерием Колмогорова: имеет ли данный массив соответствующий закон распределения

Список используемой литературы


Задание №1. Проверка теоремы Бернулли на примере моделирования электрической схемы

Определение: При неограниченном увеличении числа опытов n частота события A сходится по вероятности к его вероятности p.

План проверки: Составить электрическую схему из последовательно и параллельно соединенных 5 элементов, рассчитать надежность схемы, если надежность каждого элемента: 0.6 < pi< 0.9. Расчет надежности схемы провести двумя способами. Составить программу в среде TurboPascal .

Схема:

Электрическая цепь, используемая для проверки теоремы Бернулли:

Расчет:

Чтобы доказать выполнимость теоремы Бернулли, необходимо чтобы значение частоты появления события в серии опытов в математическом моделировании равнялось значению вероятности работы цепи при теоретическом расчёте этой вероятности.

Математическое моделирование в среде Turbo Pascal

ProgramKURSOVIK;

Uses CRT;

Const c=5;

Var op,i,j,n,m:integer;

a,rab,pp,ppp,ppp1,ppp2:real;

p:array[1..c] of real;

x:array[1..c] of byte;

Begin

ClrScr;

Randomize;

p[1]:=0.7; p[2]:=0.8; p[3]:=0.9; p[4]:=0.7; p[5]:=0.8;

Writeln(' Опытов: Исходы: Вероятность:'); Writeln;

For op:=1 to 20 do Begin

n:=op*100;m:=0;

Write(' n=',n:4);

For i:=1 to n do Begin

For j:=1 to c do Begin

x[j]:=0;

a:=random;

if a<p[j] then x[j]:=1;

End;

rab:=x[i]+x[2]*(x[3]+x[4]+x[5]);

If rab>0 then m:=m+1;

End;

pp:=m/n;

writeln(' M=',m:4,' P*=',pp:3:3);

End;

ppp1:=p[1]+p[2]*(p[3]+p[4]+p[5]-p[3]*p[4]-p[3]*p[5]-p[4]*p[5]+p[3]*p[4]*p[5]);

ppp2:=p[1]*p[2]*(p[3]+p[4]+p[5]-p[3]*p[4]-p[3]*p[5]-p[4]*p[5]+p[3]*p[4]*p[5]);

ppp:=ppp1-ppp2;

Writeln; Writeln(' Вер. вопыте: p=',ppp:6:3);

Readln;

End.

Результат работы программы

Опытов: Исходы: Вероятность:

n= 100 M= 94 P*= 0.940

n= 200 M= 163 P*= 0.815

n= 300 M= 247 P*= 0.823

n= 400 M= 337 P*= 0.843

n= 500 M= 411 P*= 0.822

n= 600 M= 518 P*= 0.863

n= 700 M= 591 P*= 0.844

n= 800 M= 695 P*= 0.869

n= 900 M= 801 P*= 0.890

n=1000 M= 908 P*= 0.908

n=1100 M= 990 Р*= 0.900

n=1200 M= 1102 P*= 0.918

n=1300 M= 1196 P*= 0.920

n=1400 M= 1303 P*= 0.931

n=1500 M= 1399 P*= 0.933

n=1600 M= 1487 P*= 0.929

n=1700 M= 1576 P*= 0.927

n=1800 M= 1691 P*= 0.939

n=1900 M= 1782 P*= 0.938

n=2000 M= 1877 P*= 0.939

Вероятность в опыте: p= 0.939

Теоретический расчёт вероятности работы цепи :

I способ :

II способ :

Вывод: Из математического моделирования с помощью TurboPascal видно, что частота появления события в серии опытов сходится по вероятности к рассчитанной теоретически вероятности данного события P(A) = 0.939.

Распределение дискретной случайной величины по геометрическому закону распределения

Моделирование случайной величины, имеющей геометрический закон распределения:

(X=xk) = p(1-p)k

где xk = k=0,1,2…, р – определяющий параметр, 0<p<1. Этот закон является дискретным. Составим теоретический ряд распределения, присваивая р=0,4 и k=0,1,2… и считая Р(Х=xk ) получим теоретический многоугольник распределения, изображённый на рис.1.

По ряду распределения составим теоретическую функцию распределения F(x), изображённую на рис.2. Смоделируем дискретную случайную величину, имеющую геометрический закон распределения, методом Монте – Карло. Для этого надо:

1. Разбить интервал (0;1) оси ОК на k частичных интервалов:

D1 – (0;р1 ), D2 – (р112 ) … Dk – (p1 +p2 +…+pk-1 ;1)

2. Разбросать по этим интервалам случайные числа rj из массива, смоделированного датчиком случайных чисел в интервале (0;1). Если rj попало в частичный интервал D I , то разыгрываемая случайная величина приняла возможное значение xi .

По данным разыгрывания составим статистический ряд распределения Р*(Х) и построим многоугольник распределения, изображенный на рис.1. Построим статистическую функцию распределения F*(X), изображённую на рис.2. Теперь посчитаем теоретические и статистические характеристики дискретной случайной величины, имеющей геометрический закон распределения.


Рис.1.

Рис.2.

Задание №2. Смоделируем случайную величину, имеющую геометрический закон распределения случайной величины

Программа в Turbo Pascal:

Program kursovik;

Uses crt;

Const M=300;

Var

K,I:integer;

P,SI,SII,SP,DTX,DSX,MX,MSX,GT,GS:real;

X:array[1..300] of real;

PI,S,P1,MMX,MS,D,DS,PS,STA,STR:ARRAY[0..10] OF REAL;

BEGIN;

CLRSCR;

randomize;

{ТЕОРЕТИЧЕСКИЙРЯД}

WRITELN('ТЕОРЕТИЧЕСКИЙ РЯД:');

P:=0.4; SI:=0;

FOR K:=0 TO 10 DO BEGIN

IF K=0 THEN PI[K]:=P ELSE

IF K=1 THEN PI[K]:=P*(1-P) ELSE

IF K=2 THEN PI[K]:=P*SQR(1-P) ELSE

IF K=3 THEN PI[K]:=P*SQR(1-P)*(1-P) ELSE

IF K=4 THEN PI[K]:=P*SQR(SQR(1-P)) ELSE

IF K=5 THEN PI[K]:=P*SQR(SQR(1-P))*(1-P) ELSE

IF K=6 THEN PI[K]:=P*SQR(SQR(1-P))*SQR(1-P) ELSE

IF K=7 THEN PI[K]:=P*SQR(SQR(1-P))*SQR(1-P)*(1-P) ELSE

IF K=8 THEN PI[K]:=P*SQR(SQR(SQR(1-P))) ELSE

IF K=9 THEN PI[K]:=P*SQR(SQR(SQR(1-P)))*(1-P) ELSE

IF K=10 THEN PI[K]:=P*SQR(SQR(SQR(1-P)))*SQR(1-P) ELSE

SI:=SI+PI[K];

WRITELN(' P[',K,']=',PI[K]:6:5);

END;

READLN;

WRITELN('ИНТЕРВАЛЫ:');

P1[1]:=0.4;

FOR K:=1 TO 10 DO BEGIN

P1[K+1]:=PI[K]+P1[K];

WRITELN( 'PI[',K,']=',P1[K]:6:5);

END;

READLN;

{СТАТИСТИЧЕСКИЙ РЯД}

WRITELN;

WRITELN('СТАТИСТИЧЕСКИЙ РЯД:');

FOR I:=1 TO 9 DO BEGIN

X[I]:=RANDOM;

WRITE(X[I]:5:2);

END;

READLN;

FOR I:=10 TO 99 DO BEGIN

X[I]:=RANDOM;

WRITE(X[I]:5:2);

END;

READLN;

FOR I:=100 TO 200 DO BEGIN

X[I]:=RANDOM;

WRITE(X[I]:5:2);

END;

READLN;

FOR I:=201 TO 300 DO BEGIN

X[I]:=RANDOM;

WRITE(X[I]:5:2);

END;

READLN;

PS[K]:=0;

FOR I:=1 TO M DO BEGIN

FOR K:=0 TO 10 DO BEGIN

IF ((X[I]<P1[K]) AND (X[I]>=P1[K-1])) THEN BEGIN

PS[K]:=PS[K]+1;

END;

END;

END;

FOR K:=0 TO 10 DO BEGIN

STA[K]:=PS[K+1]/M;

WRITELN('P*[',K,']=',STA[K]:6:5);

END;

WRITELN;

WRITELN('СТАТИСТИЧЕСКИЕ ИНТЕРВАЛЫ:');

STR[1]:=STA[0];

FOR K:=1 TO 10 DO BEGIN

STR[K+1]:=STR[K]+STA[K];

WRITELN(' PS[',K,']=',STR[K]:6:5);

END;

READLN;

{ТЕОРЕТИЧЕСКОЕ И СТАТИСТИЧЕСКОЕ МАТОЖИДАНИЕ Mx}

MX:=0;

FOR K:=0 TO 10 DO BEGIN

MMX[K]:=K*PI[K];

MX:=MX+MMX[K];

END;

WRITELN('ТЕОРЕТИЧЕСКОЕ МАТОЖИДАНИЕ MX:',MX:6:5);

MSX:=0;

FOR K:=0 TO 10 DO BEGIN

MS[K]:=K*STA[K];

MSX:=MSX+MS[K];

END;

WRITELN('СТАТИСТИЧЕСКОЕ МАТОЖИДАНИЕ Mx*:',MSX:6:5);

WRITELN;

{ТЕОРЕТИЧЕСКАЯ И СТАТИСТИЧЕСКАЯ ДИСПЕРСИЯ Dx}

DTX:=0; DSX:=0;

FOR K:=0 TO 10 DO BEGIN

D[K]:=SQR(K-MX)*PI[K];

DTX:=DTX+D[K];

DS[K]:=SQR(K-MSX)*STA[K];

DSX:=DSX+DS[K];

END;

WRITELN('ТЕОРЕТИЧЕСКАЯ ДИСПЕРСИЯ Dx:',DTX:6:5);

WRITELN('СТАТИСТИЧЕСКАЯ ДИСПЕРСИЯ Dx*:',DSX:6:5);

WRITELN;

{ТЕОР И СТАТ СРЕДНЕ КВАДРАТИЧЕСКОЕ ОТКЛОНЕНИЕ G}

GT:=SQRT(DTX);

GS:=SQRT(DSX);

WRITELN('ТЕОР СРЕДНЕ КВАДРАТИЧЕСКОЕ ОТКЛОНЕНИЕ G:',GT:6:5);

WRITELN('СТАТ СРЕДНЕ КВАДРАТИЧЕСКОЕ ОТКЛОНЕНИЕ G*:',GS:6:5);

WRITELN;

READLN;

END.

Результаты:

ТЕОРЕТИЧЕСКИЙ РЯД:

P[0]=0.40000

P[1]=0.24000

P[2]=0.14400

P[3]=0.08640

P[4]=0.05184

P[5]=0.03110

P[6]=0.01866

P[7]=0.01120

P[8]=0.00672

P[9]=0.00403

P[10]=0.00242

ИНТЕРВАЛЫ:

PI[1]=0.40000

PI[2]=0.64000

PI[3]=0.78400

PI[4]=0.87040

PI[5]=0.92224

PI[6]=0.95334

PI[7]=0.97201

PI[8]=0.98320

PI[9]=0.98992

PI[10]=0.99395

Статистический ряд:

0.57 0.86 0.58 0.11 0.81 0.26 0.17 0.14 0.51 0.53 0.80 0.57 0.17 0.14 0.30 0.58 0.80 0.55 0.86 0.81 0.80 0.18 0.39 0.02 0.74 0.67 0.57 0.32 0.30 0.92 0.64 0.95 0.96 0.25 0.10 0.87 0.44 0.76 0.87 0.43 0.84 0.58 0.62 0.87 0.90 0.70 0.20 0.62 0.08 0.54 0.53 0.47 0.08 0.40 0.30 0.09 0.26 0.54 0.29 0.60 0.95 0.52 0.27 0.99 0.54 0.84 0.75 0.74 0.03 0.42 0.98 0.92 0.32 0.07 0.06 0.49 0.36 0.15 0.03 0.75 0.05 0.17 0.20 0.03 0.54 0.76 0.28 0.16 0.09 0.58 0.96 0.29 0.92 0.88 0.92 0.03 0.57 0.78 0.61 0.05 0.71 0.67 0.10 0.62 0.39 0.10 0.01 0.72 0.27 0.09 0.14 0.60 0.24 0.88 0.40 0.07 0.43 0.39 0.28 0.84 0.68 0.93 0.66 0.65 0.81 0.02 0.02 0.05 0.32 0.29 0.17 0.10 0.34 0.81 0.02 0.26 0.02 0.34 0.23 0.28 0.66 0.43 0.52 0.00 0.16 0.17 0.07 0.11 0.75 0.21 0.37 0.45 1.00 0.29 0.35 0.37 0.54 0.28 0.63 0.25 0.08 0.67 0.30 0.17 0.58 0.93 0.64 0.25 0.68 0.06 0.39 0.35 0.79 0.43 0.80 0.99 0.36 0.64 0.52 0.65 0.29 0.02 0.81 0.01 0.53 0.98 0.89 0.61 0.25 0.32 0.44 0.99 0.14 0.30 0.28 0.44 0.83 0.97 0.01 0.72 0.36 0.09 0.03 0.57 0.21 0.66 0.26 0.80 0.39 0.95 0.48 0.10 0.59 0.39 0.94 0.25

0.28 0.86 0.03 0.98 0.36 0.13 0.80 0.88 0.82 0.64 0.76 0.08 0.28 0.70 0.31 0.49 0.58 0.84 0.60 0.03 0.72 0.04 0.81 0.86 0.84 0.85 0.03 0.87 0.96 0.77 0.28 0.59 0.75 0.38 0.40 0.55 0.57 0.04 0.70 0.70 0.46 0.21 0.79 0.21 0.88 0.70 0.89 0.10 0.35 0.30 0.44 0.25 0.40 0.80 1.00 0.84 0.29 0.16 0.68 0.28 0.48 0.41 0.49 0.17 0.98 0.58 0.53 0.83 0.84 0.70 0.76 0.44 0.40 0.64 0.81 0.89 0.32 0.39 0.21 0.77 0.22 0.05 0.76 0.24

P*[0]=0.44333

P*[1]=0.21000

P*[2]=0.12667

P*[3]=0.11000

P*[4]=0.04000

P*[5]=0.02333

P*[6]=0.01667

P*[7]=0.01000

P*[8]=0.01000

P*[9]=0.00333

P*[10]=0.00148

Статистические интервалы:

PS[1]=0.44333

PS[2]=0.65333

PS[3]=0.78000

PS[4]=0.89000

PS[5]=0.93000

PS[6]=0.95333

PS[7]=0.97000

PS[8]=0.98000

PS[9]=0.99000

PS[10]=0.99333

Числовые характеристики:

MX:1.45465

Mx*:1.36478

Dx:3.29584

Dx*:3.20549

G:1.81544

G*:1.79039

Задание №3. Проверка критерием Колмогорова: имеет ли данный массив соответствующий закон распределения

Воспользуемся критерием Колмогорова. В качестве меры расхождения между теоретическим и статистическим распределениями рассматривается максимальное значение модуля разности между статистической функцией распределения F*(x) и соответствующей теоретической функцией распределения F(x).

D = max | F*(x)- F(x)|

D = 0.04

Далее определяем величину l по формуле:

l = D\| n ,

где n – число независимых наблюдений.

l = D\| n =0,04*\/ 300 = 0,693

и по таблице значений вероятности P(l) находим вероятность P(l).

P(l) = 0,711.

Это есть вероятность того, что (если величина х действительно распределена по закону F(x)) за счёт чисто случайных причин максимальное расхождение между F*(x) и F(x) будет не меньше, чем наблюдаемое.

Нет оснований отвергать гипотезу о том, что наш закон распределения является геометрическим законом распределения.

Воспользуемся критерием Колмогорова. В качестве меры расхождения между теоретическим и статистическим распределениями рассматривается максимальное значение модуля разности между статистической функцией распределения F*(x) и соответствующей теоретической функцией распределения F(x).

D = max | F*(x)- F(x)|

D = 0.04

Далее определяем величину l по формуле:

l = D\| n ,

где n – число независимых наблюдений.

l = D\| n =0,04*\/ 300 = 0,693

и по таблице значений вероятности P(l) находим вероятность P(l).

P(l) = 0,711.

Это есть вероятность того, что (если величина х действительно распределена по закону F(x)) за счёт чисто случайных причин максимальное расхождение между F*(x) и F(x) будет не меньше, чем наблюдаемое.

Нет оснований отвергать гипотезу о том, что наш закон распределения является геометрическим законом распределения.


Список используемой литературы

1. «Теория вероятностей» В. С. Вентцель.

2. «Теория вероятностей (Задачи и Упражнения)» В.С. Вентцель, Л. А. Овчаров.

3. «Справочник по вероятностным расчётам».

4. «Теория вероятностей и математическая статистика» В.Е.Гмурман.

5. «Руководство к решению задач по теории вероятностей и математической статистике» В. Е. Гмурман.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита02:33:06 03 ноября 2021
.
.02:33:03 03 ноября 2021
.
.02:33:01 03 ноября 2021
.
.02:33:00 03 ноября 2021
.
.02:32:58 03 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Контрольная работа: Моделирование дискретной случайной величины по геометрическому закону распределения

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(288262)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте