Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Теория вероятности и математическая статистика

Название: Теория вероятности и математическая статистика
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 00:07:44 19 января 2011 Похожие работы
Просмотров: 7356 Комментариев: 21 Оценило: 3 человек Средний балл: 4 Оценка: неизвестно     Скачать

Федеральное агентство по образованию РФ

НОУ ВПО Международный университет бизнеса и новых технологий (академия)

Контрольная работа по теории организации и математической статистике

Вариант № 4

Выполнила: Спицина Н. Н.

Специальность: МН - 2


Задание 1

В коробке 12 зеленых, 5 красных, 6 синих карандашей. Из коробки наудачу берут три карандаша. Какова вероятность того, что все они будут синими? Рассмотреть случаи, когда карандаши: а) не возвращают в коробку; б) возвращают в коробку.

Решение:

а) Событие А – все три вынутые без возращения в коробку карандаши синие.

Согласно классическому определению вероятность события А равна:

В коробке 12+5+6=23 карандаша.

Общее число исходов равно:

Благоприятное число способов равно:

Ответ: вероятность того, что все три вынутые без возращения в коробку карандаши синие, равна 0,011.

б) Событие В – все три вынутые с возращением в коробку карандаши синие, то есть три раза будут выниматься 1 синий шар из 23.

Вероятность извлечения одного синего карандаша р = 6/23.

Воспользуемся схемой Бернулли:

q = 1-6/23=7/23

n = 3

m=3

Ответ: вероятность того, что все три вынутые с возращения в коробку карандаши синие, равна 0,018.

Задание 2

Из колоды в 32 карты наугад вынимают 5. Найти вероятность того, что среди них окажется ровно один туз.

Решение:

Событие А – из вынутых наугад 5 карт, ровно один туз.

Согласно классическому определению вероятность события А равна:

Пусть детали пронумерованы с 1 до 80, с 1 до 20 стандартные и с 21 по 80 не стандартные.

Общее число исходов равно:


Благоприятное исход состоит в том, что вынут 1 туз из 4-х возможных и 4 другие карты из оставшихся 28, таким образом, число благоприятных способов равно:

Ответ: вероятность того, что из вынутых наугад 5 карт, ровно один туз, равна 0,407.

Задание 3

Брак изделий цеха составляет 11%. Найти вероятность того, что из 250 изделий цеха окажется бракованными: а) ровно 45 изделий; б) от 145 до 155 изделий; в) не менее 101 изделий; г) не более 100 изделий.

Решение:

а) Вероятность того, что из 250 изделий цеха окажется бракованными ровно 45 изделий, найдем, используя локальную теорему Лапласа:


б) Вероятность того, что из 250 изделий цеха окажется бракованными от 145 до 155 изделий, найдем, используя интегральную теорему Лапласа:

где Ф – функция Лапласа (значения берутся из таблиц).

Подставляем:

в) Вероятность того, что из 250 изделий цеха окажется бракованными не менее 101 изделий, найдем, используя интегральную теорему Лапласа:

,

где Ф – функция Лапласа (значения берутся из таблиц).


Подставляем:

г) Вероятность того, что из 250 изделий цеха окажется бракованными не более 100 изделий, найдем, используя интегральную теорему Лапласа:

где Ф – функция Лапласа (значения берутся из таблиц).

Подставляем:

Задание 4

Радист трижды вызывает корреспондента. Вероятность того, что будет принят первый вызов, равна 0,2, второй вызов – 0,3, третий вызов 0,4. События, состоящие в том, что данный вызов будет услышан, независимы. Найти вероятность того, что корреспондент вообще услышит вызов.

Решение:

Событие А - корреспондент услышал вызов.

Событие Н1 - принят первый вызов.

Событие Н2 - принят второй вызов.

Событие Н3 - принят третий вызов.

Р( Н1 ) = 0,2, Р( Н2 ) = 0,3, Р( Н3 ) = 0,4.

Р (А / Н1) = 1/3; Р (А / Н2) = 1/3; Р( А/Н2 ) = 1/3.

Используя формулу полной вероятности, получим

Р( А ) = Р( А / Н1 ) · Р( Н1 ) + Р( А / Н2 ) · Р( Н2 ) + Р( А / Н3 ) · Р( Н3 ) =

Ответ: вероятность того, что корреспондент услышал вызов, равна 0,3.

Задание 5

Случайная величина ξ имеет распределение вероятностей, представленное таблицей:

ξ 1 2 3 4 5
Р(Х) 0,1 0,15 0,2 0,3

Найти Р(3), функцию распределения F(Х). Построить многоугольник распределения.

Решение:

Найдем Р(3):

ξ 1 2 3 4 5
Р(Х) 0,1 0,15 0,25 0,2 0,3

Найдем и построим функцию распределения F(Х):

Построим многоугольник распределения:


Задание 6

Найти М(ξ), D(ξ), σ(ξ) случайной величины ξ примера 5.

Решение:

Найдем М(ξ) случайной величины ξ из примера 5:

Найдем D(ξ) случайной величины ξ из примера 5:

Найдем случайной величины ξ из примера 5:

Задание 7

ξ- непрерывная случайная величина с плотностью распределения φ(Х), заданной следующим образом:


φ(Х)=

Найти функцию распределения F(Х).

Решение:

Найдем функцию распределения F(Х):

При

При

При

Задание 8

ξ- непрерывная случайная величина из примера 7. Найти М(ξ), D(ξ).

Решение:

Найдем М(ξ):

.

Найдем D(ξ):

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита02:44:54 03 ноября 2021
.
.02:44:52 03 ноября 2021
.
.02:44:50 03 ноября 2021
.
.02:44:49 03 ноября 2021
.
.02:44:48 03 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Контрольная работа: Теория вероятности и математическая статистика

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(288262)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте