Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Линейные системы уравнений

Название: Линейные системы уравнений
Раздел: Рефераты по математике
Тип: реферат Добавлен 23:23:57 13 августа 2009 Похожие работы
Просмотров: 1476 Комментариев: 22 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Реферат

Тема: «Линейные системы уравнений»

Содержание

1. Уравнения, векторы, матрицы, алгебра

2. Умножение матриц как внешнее произведение векторов

3. Нормы векторов и матриц

4. Матрицы и определители

5. Собственные значения и собственные векторы

6. Ортогональные матрицы из собственных векторов

7. Функции с матричным аргументом

8. Вычисление проекторов матрицы

Пример использования числовых характеристик матриц

10. Оценка величины и нахождение собственных значений

Литература


1. Уравнения, векторы, матрицы, линейная алгебра

Многие из рассмотренных нами задач сводились к формированию систем линейных алгебраических или дифференциальных уравнений, которые требовалось решить. Пока системы включали в себя не более трех-четырех переменных, их несложно было решать известными классическими методами: методом определителей (Крамера) или методом исключения переменных (Гаусса). С появлением цифровых вычислительных машин порядок алгебраических уравнений, решаемых методом исключений вырос в несколько десятков раз. Однако выявилось множество причин, по которым решение таких систем получить не удавалось. Появившиеся различные модификации метода исключения не привели к существенным улучшениям ситуации с получением решений. Появление же систем с количеством переменных более многих сотен и тысяч заставили обратиться и развивать итерационные методы и методы эквивалентных векторно-матричных преобразований применительно к решению линейных систем алгебраических уравнений.

Основные теоретические результаты были получены путем обобщения известных классических методов функционального анализа и алгебры конечномерных линейных пространств на векторно-матричные представления систем линейных алгебраических и дифференциальных уравнений.

Общая форма записи линейной системы алгебраических уравнений с n неизвестными может быть представлена следующим образом:

Здесь – неизвестные,

– заданные числа,

– заданные числовые коэффициенты.

Последовательность записи уравнений в системе и обозначение неизвестных в последней не играет роли. В этом плане удобно при анализе и исследованиях системы использовать упорядоченную индексацию натурального ряда для неизвестных, значений правых частей и коэффициентов в уравнениях, однозначно привязывая, тем самым, каждое слагаемое и каждое уравнение к определенной позиции в общей записи. В результате можно выделить в данной записи уравнений три позиционно упорядоченных неделимых объекта:

список переменных – ,

список правых частей – и

матрицу коэффициентов – .

Первые два объекта в линейной алгебре называют вектором-строкой , а второй – квадратной матрицей.

Операции с векторами, матрицами должны быть определены так, чтобы однозначно отображать допустимые эквивалентные преобразования исходной системы алгебраических уравнений. В предельных случаях задания векторов и матриц: , – аддитивные и мультипликативные операции должны переходить в аналогичные операции со скалярными величинами.

Если рассмотреть i- тую строку исходной системы

,


то в ней кроме упорядоченного расположения компонент присутствует упорядоченное по индексу j размещение коэффициентов , которые могут рассматриваться как вектор-строка . Результатом суммы покомпонентного перемножения двух векторов-строк должно быть число. В линейной алгебре такая операция с векторами определена и названа скалярным или внутренним произведением векторов:

.

Скалярное произведение линейно, так как обладает основными свойствами линейных преобразований , и коммутативно.

Определение скалярного произведения позволяет переписать исходную систему уравнений в виде вектора с компонентами из скалярных произведений:

или

.

Вторая форма представления векторов в форме столбцов более наглядна в смысле зрительного установления покомпонентного равенства двух векторов: стоящего слева от знака равенства и справа. Эта форма, форма вектора-столбца принята за каноническую (основную).

Левый вектор-столбец в записи каждой строки содержит вектор неизвестных и естественно желание вынести его за прямые скобки. Оставшиеся коэффициенты упорядочены, как в матрице . Теперь для представления исходной системы уравнений в виде несложно определить векторно-матричную операцию , результатом которой является вектор с i- той компонентой, равной .

Аксиоматическое построение линейной (векторной) алгебры с рассмотренными базовыми операциями позволило установить важные и полезные свойства, как самих объектов алгебры, так и их алгебраических выражений.

2. Умножение векторов и матриц

Среди n- мерных векторов и векторных операций над ними важно выделить сумму n векторов, умноженных на числовые константы:

,

которая при произвольном выборе в частности может оказаться нулевым вектором (с нулевыми компонентами) или одним из суммируемых векторов . Если нулевой вектор при суммировании не нулевых векторов можно получить лишь в случае, когда все , то такие векторы в наборе называют линейно независимыми . Такими векторами в частности будут единичные векторы , у которых все компоненты нулевые, кроме единичной компоненты, расположенной на j- строке.

Линейно независимый набор единичных векторов с геометрической точки зрения можно рассматривать как n- мерную систему координат. Набор компонент любого вектора в этой n- мерной системе определяет координаты точки конца вектора, исходящего из начала координат, а также являются длинами проекций вектора на координатных осях.

Среди матриц размера и операций с ними в первую очередь необходимо отметить операцию умножения матрицы на матрицу. Необходимость введения операции умножения матриц возникает уже при первом взгляде на полученную векторную форму записи линейного уравнения . Векторы слева и справа имеют равные компоненты. Так как коэффициенты в строках матрицы в общем произвольны по величине, то соответствующие компоненты вектора x не обязаны быть равными компонентам вектора y . Последнее означает, что умножение вектора x на матрицу A вызвало изменение длины и направления вектора x . Если аналогичное преобразование выполняется над вектором правой части до решения уравнения, то вектор левой части должен быть преобразован так же:

.

Фактически мы имеем дело с заменой системы координат. Рассмотрим методику вычисления коэффициентов результирующей матрицы уравнения:

,

где – элемент матрицы С , равный скалярному произведению вектор-строки матрицы В на вектор-столбец матрицы А .

Произведение матриц в общем случае не коммутативно. Ассоциативный и распределительный законы в матричных выражениях выполняются.

3. Нормы векторов и матриц

Интерпретация упорядоченного набора чисел, как вектора в многомерном пространстве, позволяет говорить и о его длине. В прямоугольной системе координат по известным длинам проекций на координатные оси длину самого вектора вычисляют, как корень квадратный из суммы квадратов проекций:

,

где – компоненты вектора ,

– евклидова норма вектора, его длина.

В качестве нормы в литературе иногда используют квадрат длины вектора или другое выражение с компонентами вектора, лишь бы оно обладало свойствами расстояния: было положительным, линейным и удовлетворяло неравенству треугольника.

Деление вектора на величину его нормы называют нормированием , т.е. приведением вектора к единичной длине.

Норма матрицы в принципе тоже может быть определена в виде корня квадратного из суммы квадратов ее элементов или другими выражениями со свойствами расстояний. Однако в ряде случаев работы с векторно-матричными выражениями нормы векторов и матриц должны быть согласованными ввиду того, что результатом произведения матрицы на вектор является опять же вектор. Если выражение для нормы вектора принято, то

,

где функция sup говорит о том, что из всех отношений норм, стоящих в числителе и знаменателе, взятых при любом векторе x , кроме нулевого, выбирается наименьшее, т.е. это функция выбора нижней границы значений. Согласованная матричная норма для евклидовой нормы вектора удовлетворяет неравенству

.

Нормы вектора и матрицы служат, в основном, для сопоставительной оценки матриц и векторов, указывая на возможный диапазон представления строгих числовых характеристик. К числу последних, в первую очередь, нужно отнести определители матриц, собственные значения и собственные векторы матриц и ряд других.

4. Матрицы и определители

Упорядоченный набор коэффициентов из системы линейных алгебраических уравнений используется для получения числовой характеристики, величина которой инвариантна по отношению к эквивалентным преобразованиям системы. Речь идет об определителе матрицы. Важное свойство определителей матрицы обнаруживается в связи с вычислением произведения матриц:

Учитывая это свойство и зная, что определитель единичной матрицы det(E )=1, можно найти матрицу B и ее определитель из уравнения:

откуда следует, что и .

Из свойств определителей нелишне помнить и такие:

где – транспонированная матрица A ,

n – размер квадратной матрицы A ,

– матрица перестановки строк или столбцов,

s, c= 0,1,…, n – число выполненных перестановок строк и / или столбцов.

Если обратная матрица исходной системы уравнений определена, то, используя эквивалентные преобразования их векторно-матричной записи, решение уравнений можно представить в следующем виде:


Умножив вектор правых частей на обратную матрицу, получим вектор решения.

Классический способ вычисления обратной матрицы использует определители и осуществляется по формуле:

,

где – алгебраическое дополнение, а – минор матрицы A , получаемый вычислением определителя матрицы A , в которой вычеркнуты j- тая строка и i- тый столбец.

Такой способ вычисления определителя представляет в основном теоретический интерес, так как требует выполнения неоправданно большого числа операций.

Очень просто вычисляется определитель, если матрица диагональная или треугольная. В этом случае определитель равен произведению диагональных элементов. Кстати и решения уравнений, имеющих такие матрицы коэффициентов, получаются тривиально. Поэтому основные усилия разработчиков методов решения алгебраических уравнений направлены на поиск и обоснование эквивалентных преобразований матрицы с сохранением всех ее числовых характеристик, но имеющих в конце преобразований диагональную или треугольную форму.

5. Собственные значения и собственные векторы

Рассмотрим теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования.

Найдем вектор, который под воздействием матрицы A изменяет только свою величину, но не направление. Для системы уравнений это означает, что вектор решения должен быть пропорционален с некоторым коэффициентом вектору правой части:

В результате несложных преобразований получены однородные векторно-матричные уравнения в столбцовой и в строчной формах с некоторым числовым параметром и неизвестным вектором-столбцом x и вектором-строкой , представляющих собственное состояние системы. Однородная система может иметь отличное от нуля решение лишь в том случае, когда определитель ее равен нулю. Это следует из формул получения решения методом определителей (Крамера), в которых и определитель знаменателя, и определитель числителя оказываются равными нулю.

Полагая, что решение все же существует, т.е. и , удовлетворить уравнению можно только за счет приравнивания нулю определителя однородной системы:

Раскрыв определитель и сгруппировав слагаемые при одинаковых степенях неизвестного параметра, получим алгебраическое уравнение степени n относительно :

Это уравнение называется характеристическим уравнением матрицы и имеет в общем случае n корней, возможно комплексных, которые называются собственными значениями матрицы и в совокупности составляют спектр матрицы . Относительно n корней различают два случая: все корни различные или некоторые корни кратные.

Важным свойством характеристического уравнения матрицы A является то, что согласно теореме Гамильтона-Кели, матрица A удовлетворяет ему:

где k- тая степень матрицы.

Подставляя каждое в однородную систему, получим векторно-матричные уравнения для нахождения векторов или векторов-строк . Эти векторы называются соответственно правыми собственными векторами и левыми собственными векторами матрицы.

Решение однородных уравнений имеет некоторую специфику. Если (как в равной мере и ) является решением, то, будучи умноженным на произвольную константу, оно тоже будет являться решением. Поэтому в качестве собственных векторов берут такие векторы, которые имеют норму, равную единице, и тогда:

Если все собственные числа различны, то собственные векторы матрицы A образуют систему n линейно независимых векторов таких, что


6. Ортогональные матрицы из собственных векторов

Из правых собственных векторов можно составить матрицу T, а из левых – матрицу , которые обладают уникальными свойствами по отношению к матрице A .

Умножив матрицу A слева на матрицу , а справа – на матрицу T , после несложных преобразований получим:

.


Каждое скалярное произведение в матрице, принимая во внимание линейную независимость собственных векторов, полученных для различных собственных значений, можно преобразовать так:

Поэтому, результатом преобразования матрицы A будет диагональная матрица с собственными значениями, расположенными на диагонали:

Если вместо A взять единичную матрицу и проделать аналогичные преобразования, то станет очевидным равенство , откуда следует . Последнее позволяет для преобразования матрицы A в диагональную обходиться только системой правых собственных векторов-столбцов:

Последнее показывает, что умножение матрицы A на слева и на S справа, где S – произвольная не особая матрица, преобразует ее в некоторую матрицу B , которая имеет определитель, равный определителю матрицы A . Такие преобразования матриц называют эквивалентными (подобными ).

Продолжая использовать T- матрицу, несложно получить следующие важные результаты:


.

7. Функции с матричным аргументом

Пусть теперь задана некоторая матричная функция от матрицы A :

.

С другой стороны очевидно и обратное

,

где – матрица с одной единицей на i -том месте диагонали ().


где проекторы матрицы A , образуемые умножением одноименных правых и левых собственных векторов по правилам умножения прямоугольных матриц с размерами соответственно и . Сумма проекторов .

Проекторы обладают свойствами идемпотентных матриц , т.е. матриц, все степени которых равны первой. Для невырожденных проекторов () матрицы A () справедливо:

Представление функции от матрицы A в виде взвешенной суммы проекций называется спектральным разложением матричной функции по собственным значениям матрицы A :

.


Если в качестве матричных функций взять и , то их спектральные разложения будут следующими:

8. Вычисление проекторов матрицы

Проекторы матрицы можно также вычислить, воспользовавшись интерполяционным многочленом Лагранжа с матричным аргументом:

По известному спектру проекторы матрицы можно найти и методом неопределенных коэффициентов. Для чего выбирают такие функции от матрицы A , которые вычисляются очевидным образом, например, такие:

Записывая разложение для каждой функции, получим следующую систему линейных уравнений относительно проекторов:

В случае, когда в спектре матрицы имеются кратные собственные значения, вычисление проекторов осуществляется по интерполяционным формулам Лагранжа, учитывающим еще и заданные значения производных в отдельных точках. Разложение матричной функции по значениям ее на спектре в этом случае имеет вид:


где – значения i -тых произ-водных функции в точках, соответствующих различным (не кратным) корням характеристического многочлена,

– число кратных корней ,

– проекторы кратных корней, в выражении которых содержатся

– проекторы различных корней.

9. Пример использования числовых характеристик матриц

Знание собственных значений матрицы и ее проекторов позволяет выполнять вычисления аналитических функций получающихся, например, при решениях систем линейных дифференциальных уравнений, при исследованиях эквивалентных матричных преобразований и пр.

Для примера построим матрицу с заданными собственными значениями и собственными векторами, основанными на векторах .

Сначала необходимо убедиться в линейной независимости исходных векторов и добиться того, чтобы левые и правые одноименные собственные векторы оказались ортогональными, т.е. . Проверка линейной независимости может быть объединена с процессом ортогонализации заданной системы векторов методом Грама-Шмидта .

Для заданных векторов построим систему векторов таких, что , следующим образом:

Откуда последовательно находятся коэффициенты :

Взаимной ортогональности векторов v можно было бы добиваться и так, чтобы каждый был ортогонален каждому , положив и приравняв нулю скалярные произведения :

Определитель этой системы называют определителем Грама :


,

где - матрица, в общем случае комплексно сопряженная с матрицей

, составленной из заданных векторов.

Если грамиан положителен, а он всегда неотрицателен, то векторы линейно независимы, а если равен нулю, то зависимы. Это один из способов проверки конкретного набора векторов на их линейную независимость.

Для заданного выше набора векторов определитель произведения матрицы X на транспонированную X * будет равен

Таким образом, заданная система векторов линейно независима. Для построения ортонормированной системы векторов последовательно вычислим коэффициенты и ортогональные векторы:

После нормирования векторы образуют правую систему собственных векторов. Транспонированная Т -матрица с этими векторами есть -матрица (); ее строки являются собственными левосторонними векторами:

.


Внешнее (матричное) произведение каждого нормированного вектора самого на себя дает нам проекторы искомой матрицы:

Умножая каждое собственное значение из заданного набора на свой проектор и суммируя, получим:

.

Аналогично получается обратная матрица:

.

С помощью этих же проекторов вычисляется любая аналитическая функция, аргументом которой является матрица A :

.

10. Оценка величины и нахождение собственных значений

Краткое рассмотрение основных теоретических положений линейной алгебры позволяет сделать следующие выводы: для успешного решения систем линейных алгебраических уравнений и вычислений матричных функций необходимо уметь находить ее собственные значения и собственные векторы.

Для любой матрицы A с действительными компонентами и любого ненулевого вектора v существует отношение Рэлея, связывающее скалярное произведение векторов v и Av с минимальным и максимальным собственными значениями:

.

К высказанному необходимо сделать еще ряд замечаний, связанных со случаями, когда исходная матрица имеет кратные собственные значения или оказывается вырожденной.

Характеристическое уравнение матрицы A с кратным корнем можно записать в виде

.

На основании этой записи можно составить минимальное характеристическое уравнение , для которого матрица A также является корнем:

.

Особенности в части определения собственных значений и векторов обычно возникают в несимметричных матрицах (). Некоторые из них никакими подобными преобразованиями не удается свести к диагональной. Например, не поддаются диагонализации матрицы n- го порядка, которые не имеют n линейно независимых собственных векторов. Однако любая матрица A размера с помощью преобразования подобия может быть приведена к прямой сумме жордановых блоков или к канонической жордановой форме :

,

где A – произвольная матрица размера ;

– жорданов блок размера ;

V – некоторая невырожденная матрица размера .

Характеристическое уравнение жорданова блока размера независимо от количества единиц в верхней диагонали записывается в виде произведения одинаковых сомножителей и, следовательно, имеет только кратных корней:

.

Если выразить матрицу V в форме вектора с компонентами в виде векторов-столбцов , то из равенства AV=VJ для каждого жорданового блока следует соотношение

.


Здесь в зависимости от структуры верхней диагонали, в которой может быть либо ноль, либо единица. Если жордановы блоки имеют размер , то мы имеем случай симметричной матрицы или матрицы с различными собственными значениями.

При поиске решений систем линейных уравнений с несимметричными матрицами, последние стремятся теми или иными приемами свести к выражению с симметричными матрицами.

Один из возможных подходов к решению несимметричных линейных систем состоит в замене исходной системы эквивалентной системой:

.

Недостаток этого подхода состоит в том, что мера обусловленности произведения матрицы A на свою транспонированную, оцениваемая отношением , оказывается больше, чем у матрицы A .

Под мерой обусловленности понимают отношение наибольшего собственного значения матрицы к наименьшему. Это отношение влияет на скорость сходимости итерационных процедур при решении уравнений.

Итак, основными алгебраическими системами уравнений можно считать неоднородные системы уравнений с симметричными матрицами коэффициентов.

Литература

1. Вержбицкий В.М. Основы численных методов: Учебник для вузов – 3-е изд. М: Высшая школа, 2009. – 840 с.

2. Самарcкий А.А. Задачи и упражнения по численным методам. Изд. 3 Изд-во: КомКнига, ЛКИ, 2006. – 208 с.

3. Турчак Л.И., Плотников П.В. Основы численных методов. Изд-во: ФИЗМАТЛИТ®, 2003. – 304 с.

4. Хеннер Е.К., Лапчик М.П., Рагулина М.И. Численные методы. Изд-во: «Академия/Academia», 2004. – 384c.

5. Чистяков С.В. Численные и качественные методы прикладной математики. СПб: 2004. – 268 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита03:45:18 03 ноября 2021
.
.03:45:16 03 ноября 2021
.
.03:45:16 03 ноября 2021
.
.03:45:15 03 ноября 2021
.
.03:45:14 03 ноября 2021

Смотреть все комментарии (22)
Работы, похожие на Реферат: Линейные системы уравнений

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287877)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте