Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Доказательства неравенств с помощью одномонотонных последовательностей

Название: Доказательства неравенств с помощью одномонотонных последовательностей
Раздел: Рефераты по математике
Тип: реферат Добавлен 06:47:21 01 февраля 2011 Похожие работы
Просмотров: 781 Комментариев: 20 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать

Муниципальное общеобразовательное учреждение

Средняя общеобразовательная школа № 4

Секция: математика

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

по теме

Доказательства неравенств с помощью одномонотонных последовательностей

Позолотина Наталья Андреевна, 9б класс,

МОУ СОШ №4 Центрального района.

224-49-85

Руководитель: Тропина Наталья Валерьяновна,

кандидат педагогических наук,

доцент кафедры математического анализа НГПУ.

(Работа выполнена в МОУ СОШ №4)

Новосибирск 2008

Содержание

Введение

1. Основные понятия и определения

2. Обоснование метода одномонотонных последовательностей для случая с произвольным числом переменных

2.1 Доказательство неравенств с минимальным числом переменных

2.2 Случай с двумя последовательностями из двух переменных

Упражнения

2.3 Случай с двумя последовательностями из трех переменных

Упражнения

2.4 Случай с двумя последовательностями из n переменных

Упражнения

2.5 Случай с n последовательностями из n переменных

Упражнения

Заключение

Список использованной литературы

Введение

В школьном курсе математике мы изучали доказательства неравенств в основном двумя способами:

- сведение к очевидному с помощью равносильных преобразований;

- графически (исследование свойств и построение графиков функции)

Не существует универсального способа доказательства всех неравенств, и более того, не существует конкретных указаний для выбора способа доказательства. Поэтому любой новый способ доказательства неравенств представляет особый интерес.

В данном работе мы рассмотрим один из таких способов: доказательство неравенств с помощью одномонотонных последовательностей.

Работа состоит из 2-х параграфов. В первом параграфе я объясняю основные определения, которые нам понадобятся для работы. Во втором параграфе находится основная работа с примерами и упражнениями.

1. Основные понятия и определения

В данном параграфе мы рассмотрим основные понятия и определения, которые нам понадобятся для дальнейшей работы.

Определение 1. Множество – это совокупность, собрание, набор некоторых объектов по какому – либо общему для них признаку.

Определение 2. Натуральные числа N – это целые положительные числа 1, 2, 3, 4, 5,…

Определение 3. Целые числа Z – это числа 0, +1, +2, +3, +4, +5…:

Z = N -N {0}

Определение 4. Рациональные числа Q– это числа представимые обычными дробями в виде , где mє Z, nє N (или конечными, или бесконечными периодичными дробными).

Определение 5. Иррациональные числа I – это числа, представимые бесконечными непериодическими десятичными дробями и непредставимые в виде .

Определение 6. Вещественные (действительные) числа R – объединение множества рациональных и иррациональных чисел.

R=QI

Определения 7. Неравенство – соотношение между величинами, показывающее, что одна величина больше или меньше другой.

Например: ,

Известно, что все неравенства подчиняются определенным свойствам, таким как:

а) a<b, b<ca<c

b) ab, baa=b

c) ab a+cb+c

d) a0 -a0

Определения 8. Доказать неравенство – установить истинность неравенства.

Неравенства бывают разными: с одной, двумя и более переменными, со степенями. Ля каждого неравенства существует свой способ доказательств. Мы рассмотрим еще один способ: через одномонотонные последовательности.

Определение 9. Следствие – из двух неравенств одно является следствием другого, если область истинности второго неравенства содержит в себе область истинности первого неравенства.

Обозначение: f1 (x)>f2 (x)ц1 (x)>ц2 (x) – второе неравенство – следствие первого.

Определение 10. Два неравенства называются равносильными, если каждое из них является следствием другого. Иначе это можно сформулировать так: два неравенства считаются равносильными, если их множества значений переменных, для которых они истинны, совпадают.

Обозначаются равносильные неравенства: f1 (x)>f2 (x)ц1 (x)>ц2 (x)

Эти определения аналогичны соответствующим определениям для уравнений. Как и для уравнений, можно сформулировать утверждения о действиях, преобразующих данное неравенство в равносильное ему. Такими действиями могут быть:

– прибавление к обеим частям неравенства одного слагаемого;

– перенос слагаемого с противоположным знаком из одной части неравенства в другую;

– умножение обеих частей на положительное число или положительную функцию и т.д.

Следует, однако, производя эти действия, следить, чтобы не изменилась область допустимых значений, так как иначе будет нарушена равносильность этих неравенств.

Определение 11. Метода математической индукции – метод доказательства неравенств, путем схожести доказательств от самого легкого к самому сложному.

Например, Р(n) – некоторое утверждение, зависимое от n є N

1) Проверяем правдивость Р(1)

2) Предполагаем, что P(k) истинно

3) Доказываем истинность Р(k+1)

4) Заключаем, что Р(n) истинно для любых n.

Определение 12. Одномонотонные последовательности – это последовательности чисел вида ( а1 а2 … аn )( b1 b2 … bn ) записанных в виде таблицы, где наибольшее из чисел а1 а2 … аn находится над наибольшим числом из чисел b1 b2 … bn и второе по величине из чисел а1 а2 … аn над вторым по величине из чисел b1 b2 … bn и т.д., другими словами обе последовательности одновременно возрастающие или одновременно убывающие.

Определение 13. Произведение одномонотонных последовательностей (а1 , а2 , …аn ), (b 1 , b2 ,…bn ), …( d 1 , d 2 ,…, dn ) это число вида

= а1 b1 …d12 b2 …d2 + …+an bn …dn

2. Обоснование метода одномонотонных последовательностей для случая с произвольным числом переменных

Данный параграф разбит на пункты, в которых мы попробуем прийти к самому общему доказательству, для случая k последовательностей с n числом переменных, с помощью метода математической индукции.

2.1 Доказательство неравенств с минимальным числом переменных

а1 *b1 – неравенство с минимальным числом переменных. Тогда

= a1 b1.

Так как это неравенство минимальное из всех существующих, то сравнивать с похожим неравенством его просто невозможно.

2.2 Случай с двумя последовательностями из двух переменных

Если = a1 b1 . то 1 b12 b2

Теорема 1. Пусть (а1 а2) (b 1 b 2 ) – одномонотонные последовательности. Тогда

Доказательство

Действительно,

=a1 b1 +a2 b2 -a1 b2 -a2 b1 = (a1 -a2 ) (b1 -b2 )

Так как последовательности (а1 а2 )(b1 b2 ) одномонотонны, то числа a1 -a2 и b1 -b2 имеют одинаковый знак. Поэтому

(a1 -a2 )(b1 -b2 ) 0.

Теорема доказана.

Упражнения

Данные ниже упражнения мы решим с помощью Теоремы 1

Упражнение №1 .

Пусть a и b – положительные вещественные числа.

Доказать неравенство

a3 +b3 a2 b+b2 a.

Доказательство.

Заметим, прежде всего, что

a3 +b3 =, a2 b+b2 a =

А так как последовательности (a2 , b2 ), (a, b) одномонотонны, то


А это значит, что a3 +b3 a2 b+b2 a.

Что и требовалось доказать.

Докажем это же неравенство, но другим способом.

Значит a3 +b3 a2 b+b2 a.

Что и требовалось доказать.

Мы не можем сказать какой из методов доказательства решения легче, так как в данном случае оба метода решения неравенства примерно одинаковые по сложности.

Упражнение №2 .

Пусть a и b – положительные вещественные числа.

Доказать неравенство.

а2 +b2 .

Доказательство.

Заметим, прежде всего, что


а2 +b2 =, ,

А так как последовательности (), () одномонотонны, то

.

Что и требовалось доказать.

2.3 Случай с двумя последовательностями из трех переменных

Рассмотрим последовательность (а123 ) и (b 1 , b2 ,b3 ), и запишем в виде таблицы

Если последовательность (а123 )(b1 , b2 ,b3 ) записанных в виде таблицы, где наибольшее из чисел а123 находиться над наибольшим из чисел b 1 ,b2 ,b3 , а второе по величине а123 находиться над вторым по величине из чисел b 1 ,b2 ,b3 , и где наименьшее из чисел а123 находиться над наименьшим из чисел b 1 ,b2 ,b3 то последовательность одномонотонная.

Если =a1 b1 , и 1 b12 b2 , то 1 b12 b2 +a3 b3


Для доказательства следующих теорем нам понадобится одно свойство одномонотонных последовательностей, которое оформим в виде леммы.

Лемма. Если (а1 , а2 , …а n ) и (b 1 , b2 ,… bn ) одномонотонные последовательности, то их произведение не изменится при перестановки местами столбцов.

Доказательство.

Рассмотрим последовательность с двумя переменными из двух переменных.

1 b12 b2 .

Заметим, что а1 b12 b2 = а2 b2 + а1 b1 по переместительному свойству сложения. Значит, в самой таблице мы тоже можем переставлять столбцы переменных, при этом сохраняется одномонотонность последовательности. То есть

=

Теперь рассмотрим последовательность с двумя последовательностями из трех переменных.

1 b12 b2 +a3 b3 .

Кроме того, что мы можем поменять переменные по переместительному свойству, а по сочетательному свойству мы можем объединять некоторые слагаемые, сохраняя одномонотонность последовательности. То есть

а1 b12 b2 +a3 b3 = (a3 b32 b2 )+ а1 b1 =

Лемма доказана

Теорема 2. Пусть (а1 а2 а3 ), (b1 b2 b 3 ) – одномонотонные последовательности и ()( здесь и в дальнейшем) любая перестановка чисел b1 b2 b 3 . Тогда

.

Доказательство.

Действительно, если последовательность отличается от (b1 b2 b3 ) то найдется пара чисел k, l (1k<l3) такая, что последовательности (ak , al ) и (bk , bl ) не одномонотонны. Значит, поменяв местами числа и , мы увеличим всю сумму, а значит и всю сумму . То есть

, так как .

Очевидно, что за конечное число попарных перестановок элементов 2-ой строки можно получить одномонотонную последовательность.

Теорема доказана

Упражнения

Данные ниже упражнения мы решим с помощью Теоремы 2

Упражнение №1.

Пусть a и b и c – положительные вещественныечисла.

Докажите неравенство.

a3 +b3 +c3 a2 b+b2 c+c2 a.

Доказательство.

Заметим, прежде всего, что

a3 +b3 +c3 =, a2 b+b2 c+c2 a =

А так как последовательности (a2 , b2 , c2 ), (a, b , c) одномонотонны, то

.

А это значит, что a3 +b3 +c3 a2 b+b2 c+c2 a.

Что и требовалось доказать.

Упражнение №2.

Пусть a и b и c – положительные вещественныечисла.

Докажите неравенство.

.

Доказательство.


Заметим, прежде всего, что

и (a, b, c) и () одномонотонные последовательности, то

,

.

Складывая эти неравенства, мы получаем

.

Отделим дроби с одинаковым знаменателем в правой части

.

Вычислив, получаем

.


А это значит, что

Что и требовалось доказать

2.4 Случай с двумя последовательностями из n переменных

Рассмотрим одномонотонные последовательность (а1 , а2 , …аn ) и (b 1 , b2 ,…bn )

Если =a1 b1 , и 1 b12 b2 , то 1 b12 b2 …an bn

Теорема 3. Пусть ( а1 а2 … аn ), ( b1 b2 … bn ) – одномонотонные последовательности и ()перестановка чисел b1 b2 … bn . Тогда

.

Доказательство.

Действительно, если последовательность () отличается от (b1 b2 … bn ) то найдется пара чисел k, l (1k<ln) такая, что последовательности (ak , al ) и (bk , bl ) не одномонотонны. Значит, поменяв местами числа и и , мы увеличим всю сумму, а значит и всю сумму . То есть

,


так как .

Очевидно, что за конечное число попарных перестановок элементов 2-ой строки можно получить одномонотонную последовательность.

Теорема доказана.

Следствие.

Для любого nN верно

.

Доказательство.

Но последовательности (а1 а2 … аn ) и () не являются одномонотонными, и поэтому мы не можем воспользоваться теоремой 3.

Однако эти последовательности противомонотонны: числа в последовательностях расположены в обратном порядке – самому большому по величине соответствует самое маленькое, а самому маленькому соответствует самое большое. А из противомонотонных последовательностей сделать одномонотонные очень просто – достаточно все числа второй линии взять со знаком минус. В данном случае одномонотонными являются последовательности


1 а2 … аn ) и ()

Поэтому

Отсюда и следует искомое неравенство

Следствие

Для любого nN верно

(Неравенство Чебышева).

Доказательство.

В силу теоремы 3 справедливы следующие nнеравенства

Значит


В этих неравенствах левая часть не изменяется, а в правой части элементы второй строки меняются циклически.

Складываем все и получаем

Что и требовалось доказать

Упражнение №1.

Пусть a и b и c – положительные вещественныечисла.

Докажите неравенство.

a3 +b3 +c3 +d3 a2 b+b2 c+c2 d+d2 a.

Доказательство.

Заметим, прежде всего, что

a3 +b3 +c3 +d3 =, a2 b+b2 c+c2 d+d2 a=.

А так как последовательности

(a2 , b2 , c2 , d3 ), (a, b , c, d)

одномонотонны, то

.

А это значит, что a3 +b3 +c3 +d3 a2 b+b2 c+c2 d+d2 a.

Что и требовалось доказать.

Доказательство этого неравенства с помощью одномонотонных последовательностей я не могу сравнить с другим доказательством, так как доказать другим способом это неравенство я не смогла.

2.5 Случай с n последовательностями из n переменных

Рассмотрим одномонотонные последовательность (а1 , а2 , …аn ), (b1 , b2 ,…bn ), …(d1 , d2 ,…, dn ).

Если =a1 b1 , и 1 b12 b2 , и 1 b12 b2 …an bn ,

то = а1 b1 …d12 b2 …d2 + …+an bn …dn

Теорема 4. Рассмотрим одномонотонные последовательности 1 , а2 , …аn ), (b 1 , b2 ,…bn ), …, (d1 , d2 ,…,dn ). Тогда

.

Доказательство.

Действительно, если последовательность (a1 , а2 , …аn ), (b'1 , b'2 ,…b'n ), …, (d'1 , d'2 ,…,d'n ) отличается от (а1 , а2 , …аn ), (b 1 , b2 ,…bn ), …, (d1 , d2 ,…,dn ), то найдутся переменные k, l (1k<ln) такие, что последовательности (ak , al ) и (bk , bl ) …(dk , dl ) не одномонотонны. Значит, поменяв местами числа ,, ak , al … dk , dl мы увеличим всю сумму, а значит и всю сумму . То

есть

,

так как .

Очевидно, что за конечное число попарных перестановок элементов n-ой строки можно получить одномонотонную последовательность.

Теорема доказана.

Пример

Упражнение 1

Пусть а1 , а2 , …аn - положительные вещественные числа.

Докажите, что

Это неравенство называется неравенством Коши о среднем арифметическом и среднем геометрическом. Докажем его двумя способами

Доказательство.

Перепишем его в виде:

, введя новые переменные

Имеем

Если сравнить эти два доказательства неравенства, можно заметить, что доказательство с помощью одномонотонных последовательностей гораздо легче в сравнении с доказательством Коши.

неравенство одномонотонный последовательность коши

Заключение

Работая по данной теме, я узнала новый способ доказательства неравенств, вспомнила уже изученные способы доказательства неравенств. Все упражнения в работе я решала сама.

Список использованной литературы

1. Большой справочник школьника. 5 – 11 кл. М. Дрофа, 2001 г.

2. В.В. Зайцев, В.В. Рыжков, М.И. Сканави. Элементарная математика (повторительный курс). М., Наука. 1976 г.

3. Р.Б. Алексеев, Л.Д. Курлядчик. Нетрадиционные способы доказательства традиционных неравенств. /Математика в школе. 1991 г. №4

4. Л. Пинтер, Й. Хегедыш. Упорядоченные наборы чисел и неравенства. /Квант. 1985 г. №12.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита04:05:03 03 ноября 2021
.
.04:05:01 03 ноября 2021
.
.04:05:00 03 ноября 2021
.
.04:04:59 03 ноября 2021
.
.04:04:58 03 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Реферат: Доказательства неравенств с помощью одномонотонных последовательностей

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287901)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте