Застосування подвійних інтегралів
Содержание
1. Заміна змінних у подвійному інтегралі. Подвійний інтеграл у полярних координатах
2. Застосування подвійних інтегралів до задач геометрії
3. Застосування подвійних інтегралів до задач механіки
Нехай функція неперервна в деякій замкненій і обмеженій області ,тоді існує інтеграл
.
Припустимо, що за допомогою формул
(1)
ми переходимо в інтегралі до нових змінних та .
Вважатимемо, що з формул (1) однозначно можна визначити та :
. (2)
Згідно з формулами (2), кожній точці ставиться у відповідність деяка точка на координатній площині з прямокутними координатами і .
Нехай множина всіх точок утворює обмежену замкнену область . Формули (1) називаються формулами перетворення координат,
а формули (2) - формулами оберненого перетворення.
Справедлива така теорема.
Теорема.
Якщо перетворення (2) переводить замкнену обмежену область
в замкнену обмежену область і є взаємно однозначним, і якщо функції (1) мають в області
неперервні частинні похідні першого порядку і відмінний від нуля визначник
, (3)
а функція неперервна в області , то справедлива така формула заміни змінних
. (4)
Функціональний визначник називається визначником Якобі
або якобіаном.
Таким чином, виконуючи заміну змінних в інтегралі за формулами (1), ми маємо елемент площі в координатах замінити елементом площі в координатах і стару область інтегрування замінити відповідною їй областю .
Розглянемо заміну декартових координатполярнимиза відомими формулами. Оскільки
.
То формула (3) набирає вигляду
(4)
де область задана в декартовій системі координат , а - відповідна їй область в полярній системі координат.
У багатьох випадках формулу (4) доцільно застосовувати тоді, коли підінтегральна функція або рівняння границі області містить суму , оскільки ця сума в полярних координатах має досить простий вигляд:
.
Якщо область (рис.1, а
) обмежена променями, які утворюють з полярною віссю кути та і кривими та , то полярні координати області змінюються в межах , (рис.1, б). Тому формулу (4) можна записати у вигляді
(5)
Рисунок 1 - Область: а
) ; б)
подвійний інтеграл полярна координата
Якщо область охоплює початок координат, тобто точка є внутрішньою точкою області , то
(6)
де - полярне рівняння межі області .
Приклади
1. Обчислити інтеграл , якщо область - паралелограм,
обмежений прямими (рис.1, а
).
Розв’язання
Безпосереднє обчислення цього інтеграла надто громіздке, тому що як в напрямі осі так і в напрямі осі область потрібно спочатку розбити на три області, а потім обчислювати три подвійних інтеграли.
Виконаємо таку заміну змінних: , тоді прямі та в системі переходять в прямі та у системі (рис.1, б), а прямі та відповідно в прямі та .
Таким чином, область (паралелограм) переходить у системі в прямокутник .
Рисунок 2 - Область: а
) ; б)
Далі маємо
За формулою (3)
2. У подвійному інтегралі , де - круг, обмежений колом , перейти до полярних координат з полюсом в точці , і обчислити отриманий інтеграл.
Розв’язання
Область зображена на рис.2.
Рівняння, які пов’язують і полярні координати з полюсом у точці , мають вигляд , причому видно, що кут змінюється в межах віддо .
Рисунок 3 - Область
Підставивши вирази для і в рівняння кола, отримаємо , звідки або . Ці дві криві на площині при обмежують область , яка є прообразом області при відображенні. Якобіан відображення дорівнює . Підінтегральна функція у нових змінних дорівнює . За формулою (3) маємо
.
Одержаний подвійний інтеграл за областю зводимо до повторного:
і обчислюємо повторний інтеграл, застосовуючи формулу Ньютона - Лейбніца:
2.
Застосування подвійних інтегралів до задач геометрії
1. Площа плоскої фігури.
Якщо в площинізадана фігура, щомає форму обмеженої замкненої області,то площа цієї фігури знаходиться, як відомо, за формулою:
.
2. Об'єм тіла.
Об'єм циліндричного тіла, твірні якого паралельні осі і яке обмежене знизу областю площини , а зверху - поверхнею , де функція неперервна та невід'ємна в області , знаходиться за формулою (2):
3. Площа поверхні.
Якщо поверхня ,задана рівнянням
(7)
проектується на площину в область (
рис.3) і функції , , неперервні в цій області, то площу поверхні знаходять за формулою
(8)
Рисунок 4 - Поверхня
Виведемо цю формулу. Розіб’ємо довільним способом область на частин , які не мають спільних внутрішніх точок і площі яких дорівнюють .
У кожній частині візьмемо точку ; на поверхні їй відповідатиме точка , де . Через точку проведемо дотичну площину [3]
.
На площині виділимо ту її частину, яка проектується на площину в область .
Позначимо цю частину дотичної площини через ,
а її площу - через . Складемо суму
. (9)
Границю суми (9), коли найбільший з діаметрів областей прямує до нуля, назвемо площею поверхні (
7), тобто за означенням покладемо
. (10)
Обчислимо цю границю. Оскільки область , яка має площу , проектується в область з площею , то , де - кут між площинами та (
рис.3), тому .
Але гострий кут дорівнює куту між віссю і нормаллю до дотичної площини, тобто куту між векторами та . Знайдемо за формулою (4)
.
Отже,
.
Підставляючи значення в (10), отримуємо
.
Під знаком границі маємо інтегральну суму, складену для неперервної в області функції . Ця функція інтегровна в області , тому границя у формулі (10) існує і дорівнює подвійному інтегралу (8).
1. Маса пластини.
Нехай на площині маємо матеріальну пластину, яка має форму обмеженої замкненої області , в кожній точці якої густина визначається неперервною функцією .
Маса такої пластини визначається за формулою (1.8):
.
2. Центр маси пластини. Статичні моменти.
Нехай матеріальна пластина в площині має форму області , густина пластини в точці дорівнює , де - неперервна функція в області Розіб'ємо область на частини ,виберемо в кожній з них довільну точку і наближено вважатимемо, що маса частини дорівнює , де - площа області . Коли вважати, що кожна з цих мас зосереджена в точці , то пластину можна розглядати як систему цих матеріальних точок. Тоді координати та центра маси пластини наближено визначатимуться рівностями
.
Щоб знайти точні значення координат, перейдемо в цих формулах до границі при . Тоді інтегральні суми перейдуть у подвійні інтеграли і координати центра маси пластини визначатимуться формулами
. (11)
Величини
(12)
називаються статичними моментами пластини
відносно осі та .
Враховуючи формули (8), (11) і (12), координати центра мас можна записати у вигляді
.
Якщо пластина однорідна, тобто має сталу густину , то у формулах (1.8), (11) і (12) слід покласти .
3. Моменти інерції пластини.
Відомо, що момент інерції матеріальної точки відносно деякої осі дорівнює добутку маси точки на квадрат її відстані від цієї осі, а момент інерції системи матеріальних точок відносно однієї і тієї самої осі дорівнює сумі моментів інерції всіх точок системи.
Нехай матеріальна пластина має форму області
у площині ,а неперервна функція визначає густину в кожній точці цієї пластини. Розіб'ємо область на частини , площі яких дорівнюють ,
і виберемо в кожній з цих частин довільну точку .
Замінимо пластину системою матеріальних точок з масами . Якщо пластину розглядати як систему цих матеріальних точок, то моменти інерції пластини відносно осі та відносно наближено визначатимуться за формулами
.
Перейшовши до границі в кожній із сум при , отримуємо точні формули для обчислення моментів інерції розглядуваної пластини відносно координатних осей:
. (13)
Знайдемо момент інерції пластини відносно початку координат.
Враховуючи, що момент інерції матеріальної точки з масою відносно початку координат дорівнює ,
аналогічно отримуємо, що
. (14)
|