Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Концепции современного естествознания 9

Название: Концепции современного естествознания 9
Раздел: Рефераты по биологии
Тип: реферат Добавлен 01:42:25 09 июня 2011 Похожие работы
Просмотров: 60 Комментариев: 22 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Концепции современного естествознания

Лекция 13. Мегамир, основные космологические и космогонические представления (I)

1. Основные представления о мегамире

2. Солнечная система

Планеты-гиганты

Малые планеты и кометы

3. Гипотезы о возникновении планетных систем

Контрольные вопросы

Литература

1. Основные представления о мегамире

Между мегамиром и макромиром нет строгой границы. Обычно полагают, что он начинается с расстояний около 107 и масс 1020 кг. Опорной точкой начала мегамира может служить планета Земля (диаметр 1,28×107 м, масса 6×1021 кг). Поскольку мегамир имеет дело с большими расстояниями, то для их измерения вводят специальные единицы: астрономическая единица, световой год и парсек.

Астрономическая единица (а.е.) – среднее расстояние от Земли до Солнца, равное 1,5×1011 м.

Световой год – расстояние, которое проходит свет в течение одного года, а именно 9,46×1015 м.

Парсек (параллакс-секунда) – расстояние, на котором годичный параллакс земной орбиты (т.е. угол, под которым видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения) равен одной секунде. Это расстояние равно 206.265 астрономич. ед. = 3,08×1016 м = 3,26 св. г.

Небесные тела во Вселенной образуют системы различной сложности. Так Солнце и движущиеся вокруг него 9 планет образуют Солнечную систему. Все планеты – остывшие тела, светящиеся отраженным от Солнца светом. В ясную ночь мы видим множество звезд, которые составляют лишь ничтожную часть звезд, входящих в нашу Галактику. Основная часть звезд нашей галактики сосредоточена в диске, видимом с Земли «сбоку» в виде туманной полосы, пересекающей небесную сферу – Млечного Пути. Часто говорят, что наша Галактика называется Млечный Путь (собственно, слово галактика происходит от греческого слова «галактос» – молочный, млечный).

Все небесные тела имеют свою историю развития. Возраст Вселенной равен 15 - 20 млрд. лет (иногда указывают среднее число – 18 млрд. лет). Возраст Солнечной системы оценивается в 5-7 млрд. лет, Земли – 4,5-6 млрд. лет.

2. Солнечная система

Девять планет, вращающиеся вокруг Солнца принято делить на две группы: планеты Земной группы (Меркурий, Венера, Земля, Марс) и планеты-гиганты (Юпитер, Сатурн, Уран, Нептун, Плутон). Считается, что диаметр Солнечной системы равен приблизительно 6×1016 м: на этом расстоянии планеты удерживаются силой тяготения Солнца.

Планеты Земной группы сравнительно невелики, медленно вращаются вокруг своих осей (сутки на Меркурии длятся около 60 земных суток, на Венере – 243 дня). Ось вращения Венеры наклонена в другую сторону, и вращается Венера в направлении, обратном ее движению вокруг Солнца. У этих планет мало спутников (у Меркурия и Венеры нет, у Земли – один, у Марса – два совсем небольших). У Меркурия атмосферы практически нет, очень плотная атмосфера Венеры состоит, в основном, из СО2 , что приводит к сильному парниковому эффекту (температура на поверхности Венеры достигает 500О ). Земля имеет плотную азотно-кислородную атмосферу. Атмосфера Марса состоит в основном из CО2 , однако она сильно разрежена (давление в 150 раз меньше, чем давление на поверхности Земли).

Поверхность планет Земной группы твердая, гористая, она хорошо изучена благодаря автоматическим станциям, пролетавшим вблизи планет или даже садившимся на поверхности Марса и Венеры. Стоиит отметить, что в Солнечной Системе лишь у планеты Земной группы поверхность твердая. Химический состав планет Земной группы приблизительно одинаков. Они, в основном, состоят из соединений кремния и железа. Другие элементы присутствуют в небольшом количестве.

Строение планет земной группы более или менее одинаково. В центре планет железные ядра разной массы. У Меркурия, Земли, Марса часть ядра находится в жидком состоянии. Выше ядра находится слой, который называют мантией. Верхний слой мантии называется корой. У этих планет есть магнитные поля: почти незаметное у Венеры и ощутимое у Земли. Меркурий и Марс обладают магнитными полями средней напряженности.

Земля движется по орбите со скоростью 30 км/ч. Ее орбита незначительно отличается от круговой. В течение 24 часов Земля делает полный оборот вокруг своей оси, которая наклонена к плоскости орбиты под углом 66О 34’’. Земля сплюснута у полюсов, таким образом, ее форма близка к эллипсоиду вращения.

Планеты Земной группы отделены от планет-гигантов поясом астероидов – малых планет. Самая крупная из них – Церера, была открыта первой, в начале 19 века. Сейчас зарегистрировано свыше 5500 малых планет. Все они движутся вокруг Солнца в том же направлении, что и большие планеты, однако их орбиты вытянуты значительно сильнее.

Планеты-гиганты располагаются за орбитой Марса. Это Юпитер, Сатурн, Уран и Нептун. Самый легкий гигант – Уран – он всего лишь в 14,5 раза массивнее Земли. Особенность этих планет в том, что они имеют большие размеры и массы. Например, радиус Юпитера в 11 раз больше земного, а масса в 318 раз больше земной. Планеты-гиганты имеют малую плотность, самая низкая плотность у Сатурна: 0,7×103 кг/м3 , тогда как у Земли – 5,5×103 кг/м3 . В среднем плотность планет гигантов 3-7 раз уступает плотности планет земной группы.

У планет-гигантов нет твердой поверхности. Газы их обширных атмосфер, уплотняясь с приближением к центру, постепенно переходят в жидкое состояние.

Эти планеты быстро совершают один оборот вокруг своей оси всего 10-18 часов. Причем, они вращаются как бы слоями: слой планеты, расположенный вблизи экватора, вращается быстрее всего, а самое медленное вращение присуще околополярным областям. Такое необычное вращение обусловлено тем, что планеты-гиганты – это жидкие планеты. По той же причине гиганты сжаты у полюсов, что наблюдается даже в простой телескоп. Солнце, являясь газовым шаром, тоже вращается слоями с периодом 25-35 земных суток.

Сами гиганты и их атмосферы состоят из легких элементов: водорода и гелия. Уран и Нептун в значительной степени содержат в себе метан, аммиак, воду и другие не слишком тяжелые соединения. Другие элементы тоже есть, но их гораздо меньше. Ученые выяснили, что с увеличением массы гиганта растет и его атмосфера. Следовательно, самой обширной атмосферой обладает Юпитер. Уран и Нептун, близкие по массе, мало отличаются и своими атмосферами. Сатурн занимает промежуточное положение.

В центре гигантов есть небольшое твердое ядро, но оно относительно невелико. Газообразная атмосфера каждого гиганта плавно переходит в жидкость, а та постепенно тоже уплотняется к центру планет. По-видимому, в недрах планет-гигантов, где давление и температура очень высокие, есть слой водорода, обладающего металлическими свойствами. Это необычное вещество не является в полной мере ни газообразным, ни твердым. Но оно обладает важным свойством: проводит ток. Благодаря этому, планеты-гиганты обладают магнитным полем.

Магнитные поля планет-гигантов превосходят магнитные поля планет земной группы. Интенсивность магнитного поля качественно определяется размерами магнитосферы планеты: пространства вокруг нее, в котором магнитное поле планеты сильнее солнечного. Влияние солнечного ветра – потока заряженных частиц, вырывающихся с поверхности Солнца, – делает очертания магнитосфер несимметричными. Магнитные поля захватывают летящие от Солнца заряженные частицы высоких энергий, формируя мощные радиационные пояса и полярные сияния.

Планеты-гиганты окружены естественными спутниками Точное их число еще не известно. Из известных 68-ми спутников только три принадлежат планетам земной группы. У Сатурна открыто 18 спутников, у Урана – 21, у Юпитера – 17, у Нептуна – 8.

Кроме спутников, планеты-гиганты имеют кольца – скопления мелких частиц, вращающихся вокруг планет и собравшихся вблизи плоскости их экваторов. Наиболее крупными обладает Сатурн – они были обнаружены еще в 17 в.

Между орбитами Юпитера и Сатурна проходят орбиты тысяч небольших (до нескольких километров) немассивных тел - астероидов. Эти тела, называемые также малыми планетами, не имеют правильной формы и по химическому составу близки к планетам земной группы. Орбиты астероидов имеют различные углы с плоскостью эклиптики (большой круг небесной сферы, по которому происходит видимое годичное движение Солнца), их орбиты заметно вытянуты. Все известные астероиды вращаются вокруг Солнца в прямом направлении. За орбитой Нептуна, как позволяют судить последние наблюдения, тоже находится пояс астероидов. Орбита планеты Плутон, видимо, уже проходит внутри этого пояса.

Похожи на малые планеты и кометы, состоящие из смеси замерзших газов и пыли (грязные снежки). Приближаясь к Солнцу, кометы прогреваются, и с их поверхности начинают испаряться газы, которые светятся под воздействием солнечного излучения. Солнечный ветер отбрасывает испарившиеся частицы, образуя так называемые кометные хвосты, направленные всегда прочь от Солнца. Как и астероиды, кометы обладают малыми размерами и массами. Их орбиты могут быть самыми различными: иметь всевозможные, наклоны к плоскости эклиптики (большой круг небесной сферы, по которому происходит видимое годичное движение Солнца). Кометы могут двигаться вокруг Солнца, как в прямом, так и в обратном направлении.

Центральным телом солнечной системы является - Солнце, представляющее собой раскалённый плазменный шар. Солнце - ближайшая к Земле звезда. Масса Солнца в 332.958 раз больше массы Земли. В Солнце сосредоточено 99,866% массы Солнечной системы. Температура поверхности Солнца, 5770 К.

История телескопических наблюдений Солнца начинается с наблюдений, выполненных Г. Галилеем в 1611 году; были открыты солнечные пятна, определён период вращения Солнца вокруг своей оси. В 1843 году немецкий астроном Г. Швабе обнаружил цикличность солнечной активности. Развитие методов спектрального анализа позволило изучить физические условия на Солнце. В 1814 году Й. Фраунгофер обнаружил тёмные линии поглощения в спектре Солнца - это положило начало изучению химического состава Солнца.

С 1836 года регулярно ведутся наблюдения затмений Солнца, что привело к обнаружению короны (самый обширный и разреженный слой атмосферы Солнца) и хромосферы (самый близкий плотный и тонкий слой атмосферы Солнца к его видимой поверхности– фотосфере), а также солнечных протуберанцев. В 1913 году было доказано существование на Солнце магнитных полей. В начале 40-х годов XX века было открыто радиоизлучение Солнца. Существенным толчком для развития физики Солнца во второй половине XX века послужило развитие магнитной гидродинамики и физики плазмы. После начала космической эры изучение ультрафиолетового и рентгеновского излучения Солнца ведётся методами внеатмосферной астрономии с помощью ракет, автоматических орбитальных обсерваторий на спутниках Земли, космических лабораторий с людьми на борту.

Направление вращения Солнца совпадает с направлением вращения вокруг него всех его планет. Полагают, что содержание водорода в Солнце по массе около 70%, гелия около 27%, содержание всех остальных элементов около 2,5%. Более 70 химических элементов, найденных на Солнце, присутствуют в составе планет Солнечной системы, что доказывает единство происхождения Солнца и планет солнечной системы. Источником энергии, пополняющим потери на излучение и поддерживающим высокую температуру Солнца, являются ядерные реакции превращения водорода в гелий, происходящие в недрах Солнца.

Солнечная активность. На фотосфере – видимой поверхности Солнца наблюдаются темные пятна. Причина их появления – сильные магнитные поля, которые замедляют движение горячих потоков от центра Солнца к его поверхности, т.е. темные пятна – это более холодные области фотосферы. С появлением пятен связаны и другие явления: вспышки в хромосфере, сопровождающиеся различными излучениями (тепловым, ультрафиолетовым, рентгеновским и т.п.). Эти явления называются солнечной активностью. В годы максимумов солнечной активности мощность различных видов излучения возрастает в несколько раз. Показателем, или индексом солнечной активности служит число Вольфа (W), его можно вычислить по формуле

W=k*(f+10g),

где f - количество наблюдаемых пятен, g - количество образованных ими групп, k - нормировочный коэффициент, выводимый для каждого наблюдателя и телескопа, чтобы иметь возможность совместно использовать найденные ими относительные числа Вольфа.

Количество пятен колеблется с периодом в 11 лет, т.е. солнечная активность имеет циклических характер.

3. Гипотезы о происхождении планет Солнечной системы

Вопросами происхождения планет Солнечной системы занимается космогония. Полного и исчерпывающего ответа на этот вопрос наука не дает. Так как пока нет возможности проверить выводы современных теорий применительно к какой-либо другой планетной системе. Рассмотрим наиболее известные космогонические гипотезы.

Гипотеза Канта-Лапласа. Кант предположил, что Солнечная система образовалась из космического облака, или «хаоса». Формируясь из сгущений, возникших в первичной туманности, планеты отдалялись от нее и от Солнца центробежными силами. Интересно, что Кант изложил эти идеи в трактате, посвященном доказательству бытия Божия. По мнению Канта «Бог вложил в силы природы тайное искусство самостоятельно развиваться из хаоса в совершенное мироздание». У Канта, таким образом, образование планет происходило из холодного газопылевого облака.

Идею Канта поддержал Лаплас, однако, согласно его гипотезе планеты образовались в результате отделения от раскаленного протосолнца (<греч. prōtоs первый – «первичное» солнце, звезда в начальной стадии развития) газовых колец, их охлаждения и конденсации. Кольца разделялись на несколько масс, образовавших затем разные планеты.

Эта гипотеза получила название небулярной гипотезы Канта – Лапласа (от лат nebula – туманность). Поскольку формирование колец и планет происходило в условиях вращения туманности и действия центробежных сил, эта гипотеза называется еще и ротационной (лат. rotatio – вращение).

Момент количества движения Солнечной системы, или кинетический момент вычисляется для вращающихся тел. Он количественно характеризует это вращение. Тела могут вращаться как вокруг своей оси, так и вокруг другого тела. Для планет подходит второй случай. Так как размеры планет невелики в сравнении с радиусами их орбит, то их можно приближенно считать точечными. Тогда значение момента количества движения, присущего планете, вычисляется перемножением массы планеты, радиуса ее орбиты и скорости движения по ней (L=m*r*v).

Закон сохранения момента количества движения заключается в том, что никакие события внутри изолированной системы взаимодействующих вращающихся тел не приводят к изменению общего для системы момента количества движения. Чтобы не происходило в прошлом в Солнечной системе, эта физическая величина и миллиарды лет назад должна была быть такой же, как и сейчас.

Для Солнца, которое находится в центре Солнечной системы и вращается вокруг своей оси, момент количества движения вычисляется сложнее. Весь объем Солнца мысленно разбивается на бессчетное количество частиц и момент количества движения рассчитывается путем интегрирования. Важной характеристикой всей Солнечной системы является особенность этого распределения между планетами и Солнцем. На Солнце, в 750 раз превосходящее по массе все, что вокруг него вращается, приходится меньше 2% всего момента количества движения Солнечной системы.

Гипотеза Канта-Лапласа не объясняла, да и собственно не могла объяснять, того факта, что момент количества движения (кинетический момент) планет приблизительно в 29 раз больше момента количества движения Солнца, а это противоречит закону сохранения кинетического момента. Для разрешения этого противоречия появились так называемые «катастрофические гипотезы», к которым относится гипотеза Джинса. Согласно ей некая звезда прошла неподалеку от Солнца и вызвала мощные приливы на нем, принявшие форму газовых струй, из которых впоследствии образовались планеты. Из этой гипотезы следовал вывод об уникальности Солнечной системы.

Советский ученый О.Ю. Шмидт (1891-1956) предположил, что Солнце, вращаясь вокруг центра Галактики, могло захватить материю, обладающую достаточным моментом количества движения. Расчеты Шмидта, в частности, показали, что начальный период обращения Солнца был очень большим, а затем должен был уменьшиться до 20 суток. В действительности он равен 25 суткам, и такое совпадение считается хорошим.

В настоящее время ученые склоняются к различным вариантам небулярной гипотезы. Получены интересные результаты на численных моделях с использованием мощных ЭВМ. Для Земли, например, предложена следующая схема.

(15 млрд. лет, 4.6 млрд. лет)

Однако на большое количество теорий и гипотез существующих на сегодняшний день, которое не возможно осветить, единого мнения по этому вопросу нет. Ожидается, что новый свет на загадку образования Солнечной системы прольют дальнейшие исследования планет земной группы и планет-гигантов с помощью автоматических космических станций.

Контрольные вопросы

1. Назовите специальные единицы, использующиеся для оценки расстояний в мегамире.

2. Кратко опишите строение Солнечной системы.

3. Назовите особенности планет земной группы?

4. Назовите особенности планет-гигантов?

5. Дайте краткую характеристику Солнцу.

6. Что подразумевается под понятием «солнечная активность»?

7. Чему равен период солнечной активности?

8. Чем обусловлено появление солнечных пятен, что они представляют из себя?

9. Что такое число Вольфа, для чего оно используется?

Литература

1. Маров М.Я. Планеты солнечной системы. – М.: Наука, 1986.

2. Зигель Ф.Ю. Астрономическая мозаика. - М.: Наука, 1987.

3. Дягилев Ф.М. Концепции современного естествознания. - М.: Изд. ИЭМПЭ, 1998.

4. Дубнищева Т.Я. Концепции современного естествознания. – Новосибирск: ЮКЭА, 1997.

[1] Корона – самый обширный и разреженный слой атмосферы Солнца

[2] Хромосфера – самый близкий к видимой поверхности Солнца – фотосфере, плотный и тонкий слой атмосферы Солнца

[3] Протосолнце (<греч. prōtоs первый) – «первичное» солнце, звезда в начальной стадии развития.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита10:51:07 03 ноября 2021
.
.10:51:04 03 ноября 2021
.
.10:51:03 03 ноября 2021
.
.10:51:02 03 ноября 2021
.
.10:50:59 03 ноября 2021

Смотреть все комментарии (22)
Работы, похожие на Реферат: Концепции современного естествознания 9

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287836)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте