Показатели вариации.
1. Понятие вариации и роль ее изучения в статистических исследованиях.
2. Измерители вариации.
3. Прямой способ расчета показателей вариации.
4. Свойства дисперсии и среднего квадратического отклонения.
5. Упрощенный способ расчета дисперсии и средне квадратического отклонения.
6. Относительные показатели вариации.
7. Стандартизация данных.
8. Моменты распределения.
9. Показатели асимметрии и эксцесса.
10. Средняя арифметическая и дисперсия альтернативного признака.
1. Понятие вариации и роль ее изучения в статистических исследованиях.
Вариация
– это колеблемость значений признака у отдельных единиц совокупности.
Наличию вариации обязана своим появлением статистика. Большинство статистических закономерностей проявляется через вариацию. Изучая вариацию значений признака в сочетании с его частотными характеристиками, мы обнаруживаем закономерности распределения (например: население по возрасту, студентов по уровню оценок).
Рассматривая вариацию одного признака параллельно с изменением другого, мы обнаруживаем взаимосвязи между этими признаками или их отсутствие (например: зависимость между торговой площадью и товарооборотом).
Вариации в статистике проявляются двояко, либо через изменения значений признака у отдельных единиц совокупности, либо через наличие или отсутствие изучаемого признака у отдельных единиц совокупности.
Изучение вариации в статистике имеет как самостоятельную цель, так и является промежуточным этапом более сложных статистических исследований.
2. Измерители вариации.
Простейшим показателем вариации является размах колебаний
: .
Достоинство этого показателя простота расчета, возможность использования для оценки вариации однородных совокупностей. Недостаток – неприемлемость для неоднородных совокупностей с редкими выбросами крайних значений признака.
Частично недостатки этого показателя устраняет межквартельный размах
: . Однако, он характеризует вариацию только половины совокупности.
Для учета колеблемости всех значений признака применяют показатели среднего линейного отклонения, дисперсии и средне квадратического отклонения.
Средне линейное отклонение
– среднее значение отклонений всех вариантов ряда от средней арифметической (иногда от моды или медианы):
- для несгруппированных данных;
- для сгруппированных данных.
Аналогичным по смыслу среднему линейному отклонению является показатель дисперсии и рассчитываемый на его основе показатель средне квадратического отклонения.
Дисперсия
– рассеивание, данный показатель характеризует рассеивание значений признака относительно его средней величины.
- для несгруппированных данных;
- для сгруппированных данных.
Дисперсия
– средне квадратическое отклонение всех вариантов ряда от средней арифметической. Если извлечь квадратный корень из дисперсии, получим средне квадратическое отклонение
.
- для несгруппированных данных;
- для сгруппированных данных.
Несмотря на логическое сходство, дисперсия является более чувствительной к вариации и, следовательно, чаще применяемый показатель.
3. Прямой способ расчета показателей вариации.
Расчет показателей вариации
заработной платы работников завода.
Группы со среднемесячной з/п, руб.
|
Число раб-в,
|
|
|
|
|
|
|
До 1500
|
30
|
750
|
22500
|
1909,09
|
57272,7
|
3644628
|
109338843
|
1501-3000
|
75
|
2250
|
168750
|
409,09
|
30681,8
|
167355
|
12551653
|
3001-4500
|
45
|
3750
|
168750
|
1090,91
|
49090,9
|
1190083
|
53553719
|
Свыше 4501
|
15
|
5250
|
78750
|
2590,91
|
38863,6
|
6712810
|
100692149
|
Итого
|
165
|
|
438750
|
|
175909
|
|
276136364
|
Заработная плата каждого из работников в среднем отклоняется от средне заработной платы на 1066,12 руб.
Средне квадратическое отклонение заметно больше, чем аналогичный ему по смыслу среднее линейное отклонение.
4. Свойства дисперсии и среднего квадратического отклонения.
Так же как и средняя дисперсия обладает рядом свойств, имеющих важное значение для понимания сущности этого показателя, методологии его расчета и практического использования для разработки более совершенных статистических методов.
Свойства дисперсии и средне квадратическое отклонение:
1) Если все варианты ряда уменьшить или увеличить на постоянное число, то величина дисперсии и средне квадратического отклонения не изменится. ;
2) Если все варианты ряда умножить или разделить на постоянное число, дисперсия соответственно увеличится или уменьшится в квадрат этого числа раз, а средне квадратическое отклонение в это число раз. ;
3) Если частоты ряда уменьшить или увеличить в постоянное число раз, то дисперсия и средне квадратическое отклонение от этого не изменится;
4) Дисперсия равна среднему квадрату вариантов ряда минус квадрат средней арифметической. ;
5) Общая дисперсия равна средней арифметической из частных дисперсий (внутригрупповых дисперсий) плюс дисперсии частных средних (межгрупповые дисперсии). Это свойство называется правилом сложения дисперсий
, которое широко применяется в выборочном методе, методе измерений взаимосвязей явлений, а так же дисперсионном анализе.
- общая дисперсия;
- частная дисперсия;
- средняя из частных дисперсий, - численность соответствующей группы;
- межгрупповая дисперсия;
5. Упрощенный способ расчета дисперсии и средне квадратического отклонения.
Свойства дисперсии используются для упрощения методики ее расчета. В условиях развитой вычислительной техники данный способ имеет, прежде всего, иллюстративный характер и помогает понять сущность этого показателя.
Упрощенный способ расчета дисперсии и средне квадратического отклонения (метод расчета от условного нуля).
Среднемесячная з/п работников, руб.,
|
|
|
|
|
|
|
750
|
30
|
- 1 500
|
-1
|
2
|
-2
|
2
|
2 250
|
75
|
0
|
0
|
5
|
0
|
0
|
3 750
|
45
|
1 500
|
1
|
3
|
3
|
3
|
5 250
|
15
|
3 000
|
2
|
1
|
2
|
4
|
Итого
|
|
|
|
11
|
3
|
9
|
А=2250; k=1500; с=15
6. Относительные показатели вариации.
Абсолютные измерители вариации (дисперсия, средне квадратическое отклонение) ограниченно пригодны для сравнительного анализа вариаций различных совокупностей.
Для цели сравнительного анализа применяют относительные показатели, коэффициенты вариации
. Наиболее распространенной формой коэффициентов вариации является , он показывает, какой процент от средней арифметической составляет среднее квадратическое отклонение.
Вместо средне квадратического в числителе коэффициента вариации иногда используют среднее линейное отклонение .
Если среднее линейное отклонение определялось относительно медианы или моды, то соответствующие показатели вариации будут выглядеть , .
Коэффициенты вариации определенные по различным основаниям не одинаковы, поэтому, сопоставляя вариации разных совокупностей, нужно использовать коэффициенты вариации, рассчитанные по одной и той же величине.
Коэффициент вариации является так же количественной мерой однородности совокупности. Принято считать, что если , то совокупность количественно однородна. Чем меньше, тем лучше.
7. Стандартизация данных.
Коэффициенты вариации являются сводными оценками вариаций различных совокупностей. Однако они не позволяют сопоставить между собой значения признака у отдельных или групп единиц разных совокупностей.
Для подобных сравнений прибегают к стандартизации вариантов разных совокупностей по формулам:
, где , - это стандартизированные значения вариантов ряда x и y соответственно. В процессе стандартизации мы переходим от измерения вариантов в натуральных или стоимостных единицах к их измерению величинами соответствующих средне квадратических отклонений.
Пример
: Стандартизация данных о доходах на одного члена семьи и среднедушевом потреблении мяса.
Доход на
одного
члена семьи,
тыс. руб./год,
|
Среднедушевое потребление
мяса,
|
|
|
|
|
|
|
60,7
|
12,3
|
-97,5
|
-25,6
|
9 506,25
|
655,36
|
-1,28
|
-1,31
|
84,2
|
19,1
|
-74
|
-18,8
|
5 476,00
|
353,44
|
-0,97
|
-0,96
|
112,4
|
23,1
|
-45,8
|
-14,8
|
2 097,64
|
219,04
|
-0,60
|
-0,76
|
144,5
|
35,6
|
-13,7
|
-2,3
|
187,69
|
5,29
|
-0,18
|
-0,12
|
180,1
|
49,5
|
21,9
|
11,6
|
479,61
|
134,56
|
0,29
|
0,59
|
240,9
|
57,3
|
82,7
|
19,4
|
6 839,29
|
376,36
|
1,09
|
0,99
|
284,6
|
68,4
|
126,4
|
30,5
|
15 976,96
|
930,25
|
1,66
|
1,56
|
1107,4
|
265,3
|
|
|
40 563,44
|
2 674,30
|
|
|
При стандартизации сгруппированных данных наряду с масштабированием вариантов ряда величинами соответствующих средне квадратических отклонений частоты этих рядов пересчитываются в частости.
Стандартизацию данных проводят, когда варианты сравниваемых рядов отличаются единицами измерения и порядком.
Стандартизация является важнейшим статистическим промежуточным этапом.
Стандартизация используется так же хорошо в теории выборочного метода.
8. Моменты распределения.
Моменты распределения
составляют алгоритмическую основу многих статистических методов. Различают:
- Произвольные (общий случай);
- Начальные;
- Центральные;
- Стандартные (частный случай).
Выделяют:
- Взвешенные;
- Невзвешенные.
Произвольным моментом
k
-го порядка
называется среднее значение k-ой степени отклонения всех вариантов ряда от произвольного постоянного числа.
- для несгруппированных данных;
- для сгруппированных данных.
При этом k принимает целочисленное значение от 1 до 4.
Если А=0
, то произвольный момент преобразуется в начальный момент
.
- для несгруппированных данных;
при k=1 M1
=
при k=2 M2
=
- для сгруппированных данных.
Если А=, произвольный момент преобразуется в центральный момент распределения
.
- для несгруппированных данных;
- для сгруппированных данных.
При k=1 M1
=0
При k=2 M2
=
Стандартные моменты
это начальные моменты из стандартных отклонений.
- для несгруппированных данных;
- для сгруппированных данных.
Стандартный момент k-го порядка это отношение центрального момента того же порядка к средне квадратическому отклонению в k-ой степени.
Так же как средняя арифметическая величина и дисперсия, центральные и стандартные моменты обладают рядом свойств, которые по сути ближе всего к свойствам дисперсии.
9. Показатели асимметрии и эксцесса.
При анализе распределений помимо графического изображения характер распределения можно выяснить, рассчитывая такие показатели, как асимметрия и эксцесс.
В качестве показателя асимметрии
используют стандартный момент 3-го порядка. Если распределение симметрично относительно средней то показатель асимметрии равен нулю.
Если показатель асимметрии больше 0, то есть преобладают положительные отклонения от среднего, то наблюдается правосторонняя асимметрия
, то есть преобладание в совокупности вариантов ряда превышающих среднюю.
Если же показатель асимметрии меньше 0, налицо левосторонняя асимметрия
, то есть превышение численности вариантов ряда меньше чем средняя.
Показатель эксцесса
характеризует степень колеблемости исходных данных, чем сильнее вариация, тем более пологой является кривая распределения и наоборот, чем однороднее совокупность, тем в большей степени варианты ряда сконцентрированы около средней и тем более островершинней будет кривая распределения.
В качестве эталона высоты распределения в статистике принимается кривая нормального распределения. Доказано, что стандартный момент 4-го порядка у этой кривой равен 3.
10. Средняя арифметическая и дисперсия альтернативного признака.
Альтернативный признак
– тот которым обладает или не обладает единица совокупности.
Наличие альтернативного признака обозначают 1, а отсутствие – 0. Если численность совокупности – N, а M – число единиц, обладающих изучаемым признаком, то - доля единиц, обладающих изучаемым признаком. Соответственно - доля единиц таким признаком не обладающих.
Предположим
|
|
1
|
p
|
0
|
q
|
|
1
|
p+q=1
Средняя арифметическая альтернативного признака равна p.
Дисперсия альтернативного признака .
Пример
: N=10, M=4
N-M=6
Максимальное значение дисперсии для неоднородных совокупностей .
|