Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Загальні властивості однорідних лінійних диференціальних рівнянь n-го порядку

Название: Загальні властивості однорідних лінійних диференціальних рівнянь n-го порядку
Раздел: Рефераты по математике
Тип: реферат Добавлен 19:06:03 20 января 2011 Похожие работы
Просмотров: 10 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Реферат на тему:

Загальні властивості однорідних лінійних диференціальних рівнянь n-го порядку.

1. Властивості лінійного диференціального оператору.

Лінійним диференціальним рівнянням називається рівняння вигляду

(5.1)

де Pi(x), i =1,2,…, n , f(x) – задані функції, неперервні на (a,b).

При цих умовах диференціальне рівняння (5.1) має єдиний розв’язок

y=y(x), який задовільняє початковим умовам .

Цей розв’язок визначений і n раз неперервно диференційований на (a,b).

Особливих розв’язків диференціальне рівняння (5.1) не має. Будь-який розв’язок являється частинним. Якщо при стоїть , то точки, в яких =0, називаються особливими.

Якщо f(x)=0, то диференціальне рівняння (5.1) називають однорідним

(5.2)

Для скорочення запису введемо лінійний диференціальний оператор

(5.3)

Властивості оператора L :

a) L (xy)=k *L (y), k = const;

b) L ()=L () + L ();

c) L.

Використовуючи оператор L диференціального рівняння (5.1) і (5.2) перепишемо у вигляді L (y) = f (x), L (y) = 0 .

Означення 5.1. Функція y = y (x) називається розв’язком диференціального рівняння (5.1), якщо L (y) f (x) (для диференціального рівняння (5.2)

L (y(x)) 0).

Лінійне диференціальне рівняння (5.1) залишається бути лінійним при будь-якій заміні незалежної змінної .

Лінійне диференціальне рівняння (5.1) залишається бути лінійним при будь-якій лінійній заміні шуканої функції . (5.4)

2. Властивості розв’язків лінійного однорідного диференціального рівняння n–го порядку.

Наша задача полягає в тому, щоб знайти всі дійсні розв’язки диференціального рівняння (5.5)

Для розв’язування такої задачі доцільно знайти деякі комплексні розв’язки.

Означення 5.2 Функцію z(x) = w(x) + iv(x), де w(x),v(x) дійсні функції, будемо називати комплексною функцією від дійсної змінної х (w(x) – дійсна частина, v(x) – уявна частина).

Приклад 5.1. Показати справедливість формул , . (5.6)

Формули (5.6) доводяться виходячи з розкладу відповідних множників b раз.

Похідна n-го порядку від z (x) дорівнює . (5.7)

Приведемо формули для обчислення похідної :

а) ; (5.8)

Дійсно

б) Для дійсного к і будь-якого справедлива формула

; (5.9)

в) Використовуючи (5.9) можна показати , (5.10)

де - поліноми степеня n ;

г) При будь-якому (дійсному або комплексному) справедлива формула

. (5.11)

Формула (5.11) доводиться шляхом представлення і використання формули (5.8).

Означення 5.3. Комплексна функція y (x) = (x) + i(x) (5.12) називається розв’язком однорідного диференціального рівняння (5.5); якщо

L (y(x)) 0, a < x < b.

Комплексний розв’язок (5.12) утворює два дійсних розв’язки (x), (x).

Дійсно L (y(x)) = L ((x) + i(x)) = L((x)) + iL((x)) = 0 .

Звідки L((x)) = 0, L((x)) = 0.

Властивості розв’язків лінійного однорідного диференціального рівняння (5.5).

а) Якщо (x) – розв’язок , тобто L() 0, то y=c(x), де с – довільна константа , теж розв’язок диференціального рівняння (5.5)

L(с) = сL() = 0.

б) Якщо (x), (x) - розв’язки диференціального рівняння (5.5) , то

у= (x)+(x) теж розв’язок . Дійсно L (+) = L ()+L () = 0.

в) Якщо (x), (x), ... , ) - розв’язки диференціального рівняння (5.5), то їх лінійна комбінація також являється розв’язком

L= 0.

Приклад 5.2. Записати двохпараметричне сімейство розв’язків.

, =cos(x), =sin(x) - розв’язки, тоді y = ccos(x)+csin(x) - розв’язок .

3. Необхідні і достатні умови лінійної незалежності n-розв’язків лінійного однорідного диференціального рівняння n – го порядку.

Означення 5.4. Функції (x), (x), ... , називаються лінійно незалежними на (a,b) , якщо між не існує співвідношення виду

(x) + (x) + ... + 0 , a < x < b , (5.13)

де , ... , - постійні числа не рівні нулю одночасно . В противному випадку функції (x), (x), ... , називають лінійно залежними на (a,b).

Для двох функцій поняття лінійної незалежності на (a,b) зводиться до того, щоб відношення функцій , не було постійним на (a,b).

Зауваження 5.1. Якщо одна із функцій на (a,b) тотожньо дорівнює нулю, то ці функції лінійно залежні.

Приклад 5.3. Функції =1, =x, ... , - лінійно незалежні на будь-якому інтервалі (a,b) . Дійсно співвідношення

+x + ... +x=0 , в якому не всі дорівнюють нулю, не може виконуватися для будь-яких x , так як рівняння (n-1) – го степеня має не більше (n-1) – го коренів.

Приклад 5.4. Функції , - лінійно незалежні, так як співвідношення , де не рівні одночасно нулю, виконуються не більше ніж в одній точці. Це випливає з =.

Приклад 5.5. Функції =sinx , =cosx , =1 – лінійно залежні на , так як для будь-якого х справджується співвідношення

sinx + cosx – 1 = 0 .

Розглянемо необхідні умови лінійної залежності n - функцій .

Теорема 5.1. Якщо функції (x), (x), ... , - лінійно залежні на (a,b) , то їх вронскіан W (x) тотожньо дорівнює нулю на (a,b) . Тут

W (x) = (5.14)

Доведення. Згідно умови теореми

(x) + (x) + ... + 0 , a < x < b , де не всі одночасно рівні нулю . Нехай , тоді

(5.15)

Диференціюємо (5.15) (n-1)-раз і підставляємо в (5.14)

W (x) =(5.16)

Розкладаючи визначник (5.16) на суму визначників, будемо мати в кожному з них два однакові стовпці, тому всі визначники будуть рівні нулю і отже

W (x) 0 , a < x < b. Теорема доведена.

Нехай кожна з функцій (x), (x), ... , - розв’язок диференціального рівняння (5.5) . Тоді необхідні і достатні умови лінійної незалежності цих

розв’язків даються теоремою 5.1. і слідуючою теоремою .

Теорема 5.2. Якщо функції (x), (x), ... , - суть лінійно незалежні розв’язки диференціального рівняння (5.5), всі коефіцієнти якого неперервні на (a,b) , то вронскіан цих розв’язків W не дорівнює нулю в жодній точці інтервалу (a,b) .

Доведення. Припустимо протилежне , що в точці (a,b). Складемо систему рівнянь

(5.17)

Так як визначник системи (5.17) , то вона має ненульовий розв’язок

. Розглянемо функцію y =, (5.18)

яка являється розв’язком диференціального рівняння (5.5).

Система (5.17) показує , що в точці розв’язок (5.18) перетворюється в нуль разом із своїми похідними до (n-1) –го порядку . В силу теореми існування і єдиності це значить , що має місце тотожність y (x) = , a < x < b, де не всі дорівнюють нулю . Останнє означає , що розв’язки (x), (x), ... , - лінійно залежні на (a,b). Це протиріччя і доводить теорему.

З теорем 5.1. і 5.2. випливає : для того , щоб n розв’язків диференціального рівняння (5.5) були лінійно незалежними на (a,b) необхідно і достатньо , щоб їх вронскіан не дорівнював нулю в жодній точці цього інтервалу.

Виявляється , для вияснення лінійної незалежності n розв’язків диференціального рівняння (5.5) достатньо переконатися , що W (x) не дорівнює нулю хоча б в одній точці інтервалу (a,b) . Це випливає з наступних властивостей вронскіана від n розв’язків диференціального рівняння (5.5):

а) Якщо вронскіан дорівнює нулю в одній точці (a,b) і всі коєфіцієнти диференціального рівняння (5.5) являються неперервними , то на (a,b).

Дійсно, якщо , то по теоремі 5.2. функції (x), (x), ... , - лінійно залежні на (a,b). Тоді , по теоремі 5.1. на (a,b);

б) якщо вронскіан n розв’язків диференціального рівняння (5.5) відмінний від нуля в одній точці (a,b) , то на (a,b) .

Дійсно , якби W (x) дорівнював в одній точці з (a,b) нулю , то згідно а) на (a,b) , в тому числі і в точці (a,b) , що протирічить умові.

Звідси випливає , якщо n розв’язків диференціального рівняння (5.5) лінійно незалежні на (a,b) , то вони будуть лінійно незалежні на будь-якому (a,b) .

4. Формула Остроградського – Ліувілля.

Ця формула має вигляд (5.19)

Доведення . Розглянемо вронскіан W (x) = і обчислимо його похідну

+ + .

Перших (n-1)-визначників рівні нулю , так як всі вони мають по дві однакових стрічки . Далі домножимо (n-1) стрічки останнього визначника відповідно на і складемо всі nстрічок . В силу диференціального рівняння (5.5) маємо = ,

Звідки маємо формулу (5.19) .

5. Фундаментальна система розв’язків та ії існування.

Означення 5.5. Сукупність n розв’язків диференціального рівняння (5.5) визначених і лінійно незалежних на (a,b) називається фундаментальною системою розв’язків .

З попереднього випливає , для того , щоб система n розв’язків диференціального рівняння (5.5) була фундаментальною системою розв’язків необхідно і достатньо , щоб вронскіан цих розв’язків був відмінний від нуля хоч в одній точці інтервалу неперервності коефіцієнтів диференціального рівняння (5.5) . Всі ці розв’язки повинні бути бути ненульовими .

Теорема 5.3. (про існування ФСР) Якщо коефіцієнти диференціального рівняння (5.5) являються неперервними на (a,b) , то існує фундаментальна система розв’язків на цьому інтервалі.

Доведення . Візьмемо точку (a,b) і побудуємо, використовуючи метод Пікара , розв’язки :

з початковими умовами ;

------------- // --------------- ;

... ------------- // --------------- ... ... ... ....

------------- // --------------- .

Очевидно , що , отже побудовані розв’язки лінійно незалежні .

Теорема доведена .

З методу побудови лінійно незалежних функцій випливає, що таких функцій можна побудувати безліч.

Побудована система розв’язків називається нормованою в точці .

Для будь-якого диференціального рівняння (5.5) існує тільки одна фундаментальна система розв’язків , нормована по моменту .

6. Загальний розв’язок. Число лінійно незалежних розв’язків.

Теорема 5.4. Якщо (x), (x), ... , - фундаментальна система розв’язків диференціального рівняння (5.5) , то формула

y = , (5.20) де , , ... , - довільні константи, дає загальний розв’язок диференціального рівняння (5.5) в області a < x < b,

, , ... , (5.21) , тобто в області визначення

диференціального рівняння (5.5).

Доведення. Якщо (x), (x), ... , - розв’язки диференціального рівняння (5.5) , то лінійна комбінація (5.20) теж розв’язок .

Систему (5.22) можна розв’язати відносно , , ... ,

в області (5.21) , так як . Згідно визначення (5.20) – загальний розв’язок і він містить в собі всі розв’язки диференціального рівняння (5.5) .

Теорема доведена .

Для знаходження частинного розв’язку такого , що (5.23)

необхідно все підставити в (5.22) і визначити , i=1,2,…,n .

Тоді - частинний розв’язок , якщо фундаментальна система розв’язків – нормована в точці , то , тобто

(5.24) загальний розв’язок в формі Коші .

Зауважимо , що загальний розв’язок диференціального рівняння (5.5) є однорідна лінійна функція від довільних констант .

Твердження 5.1. Диференціальне рівняння (5.5) не може мати більше ніж n лінійно незалежних частинних розв’язків.

Дійсно , нехай ми маємо (n+1) частинний розв’язок . Розглянемо nперших . Якщо вони лінійно залежні , то і всі будуть лінійно залежні , так як

, a < x < b, де всі не дорівнють нулю . Якщо ж вони лінійно залежні, то по теоремі 5.4. будь-який розв’язок , в тому числі і виражається через , , ... , , тобто =. Так , що (n+1)-ий розв’язок знову виявився лінійно залежним .

Для побудови диференціального рівняння типу (5.5) по системі лінійно незалежних функцій (x), (x), ... , , які n раз неперервно диференційовані на (a,b) , вронскіан яких , (a,b) необхідно розглянути вронскіан порядку (n+1)

= 0

і розкрити цей визначник по останньому стовпцю .

Якщо відомо один частинний ненульовий розв’язок диференціального рівняння (5.5) , то можна понизати порядок його на одиницю заміною

, або (5.25)

Тоді

і диференціального рівняння (5.5) запишемо у вигляді

Ми отримали диференціальне рівняння порядку (n-1) .

Якщо маємо к лінійно незалежнихчастинних розв’язків , то диференціальне рівняння (5.5) можна понизити на к одиниць .

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита02:21:10 04 ноября 2021
.
.02:21:09 04 ноября 2021
.
.02:21:07 04 ноября 2021
.
.02:21:06 04 ноября 2021
.
.02:21:04 04 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Реферат: Загальні властивості однорідних лінійних диференціальних рівнянь n-го порядку

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287874)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте