Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Розкриття невизначеностей за правилом Лопіталя

Название: Розкриття невизначеностей за правилом Лопіталя
Раздел: Рефераты по математике
Тип: реферат Добавлен 23:09:51 30 ноября 2010 Похожие работы
Просмотров: 370 Комментариев: 26 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Міністерство охорони здоров’я України

Житомирський фармацевтичний коледж

ім. Г.С. Протасевича

Реферат

на тему:

Розкриття невизначеностей за правилом Лопіталя

Роботу виконала

Студентка 211 групи

Піщук Олеся

Викладач:

Виговська В.Г.

Отриманий бал:

_____________

м. Житомир – 2006

План

І. Розкриття невизначеностей з використанням правила Лопіталя.

1) Правило Лопіталя.

а) Наслідок.

б) Приклад 1.

2) Розкриття невизначеностей виду: ∞-∞; 0∙∞; 1 ; 00 ; ∞0 .

а) Приклад 2.

б) Приклад 3.

в) Приклад 4.

Список використаної літератури.

І. Розкриття невизначеностей з використанням правила Лопіталя.

Лопіталь де Гійом Франсуа (1661-2.02.1704 рр.). Французький математик, член Парижської АН, народився в Парижі, вивчав математику під керівництвом У. Бернуллі. Видав перший друкований підручник по диференціальному обчисленню – “Аналіз нескінченно малих” (1696р.). В підручнику є правило Лопіталя – правило знаходження межі дробу, чисельник і знаменник якого прямує до 0. Крім того, він створив курс аналітичної геометрії конічних перетинів. Йому також належить дослідження і розвиток за допомогою математичного аналізу декількох важких задач по геометрії і механіці, а також одне із рівнянь знаменитої задачі о браністохроні.

1. Правило Лопіталя.

Нехай виконані умови:

1. функції f(х) та g(х) визначені і диференційовані в колі точки х0 ;

2. частка цих функцій в точці х0 має невизначеність вигляду або ;

3. існує .

Тоді існує і виконує рівність:

(1)

а) Наслідок.

Нехай:

1. Визначені в колі точки х0 функції f(х), g(х) та їх похідні до n -го порядку включно;

2. Частки , , …, мають невизначеність вигляду або ;

3. Існує , тоді

(2)

б) Приклад 1.

Знайти: .

Розв’язання:

Функції та визначені з усіма своїми похідними в околі точки х=0 .

Маємо:

.

2) Розкриття невизначеностей виду: ∞-∞; 0∙∞; 1 ; 00 ; ∞0 .

Існують прийоми, що дозволяють зводити вказані невизначеності до невизначеностей вигляду або , які можна розкривати з використанням правила Лопіталя.

1. Нехай і , тоді

(3)

За умовою при , тому при .

Якщо не прямує до 0 при , то границя в правій частині (3) не існує, а тому і границя лівої частини (3) не існує.

Якщо при , то вираз має невизначеність .

2. Нехай , , тоді має невизначеність вигляду при .

В цьому випадку поступають так:

Під знаком останньої границі маємо невизначеність .

3. Нехай , при . Тоді має невизначеність вигляду .

Позначимо . Шляхом логарифмування цієї рівності одержимо:

Отже, обчислення натурального логарифма границі зводиться до розкриття невизначеності вигляду .

4. Невизначеності вигляду та зводять до невизначеностей або шляхом логарифмування аналогічно до невизначеності вигляду .

а) Приклад 2.

Знайти границю .

Розв’язання:

Функції та диференційовані, а їх частка має невизначеність вигляду при .

Використовуючи правило Лопіталя, одержимо:

.

б) Приклад 3.

Знайти границю .

Розв’язання:

В цьому випадку маємо невизначеність вигляду . Позначимо і про логарифмуємо цю рівність. Одержимо:

, тобто невизначеність вигляду . Використовуючи правило Лопіталя, одержимо:

.

Отже, .

в) Приклад 4.

Знайти границю .

В цьому випадку маємо невизначеність вигляду . Нехай . Логарифмуючи цю рівність, одержимо:

.

Чотири рази застосували правило Лопіталя.

Отже, маємо:

Список використаної літератури:

1. Кривуца В.Г., Барковський В.В., Барковська Н.В. К.82. Вища математика. Практикум. Навчальний посібник.–Київ: Центр навчальної літератури, 2005.–536с.

2. Бородин А.И., Бугай А.С., Биографический словарь деятелей в области математики. Радянська школа 1979.

3. Алгебра и начала анализа: В 2-х ч./ Под. ред. Г.Н. Яковлева.–2-е изд. –К.: Вища шк., Головное изд-во, 1984.–Ч.2. 293с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита03:04:25 04 ноября 2021
.
.03:04:24 04 ноября 2021
.
.03:04:22 04 ноября 2021
.
.03:04:21 04 ноября 2021
.
.03:04:19 04 ноября 2021

Смотреть все комментарии (26)
Работы, похожие на Реферат: Розкриття невизначеностей за правилом Лопіталя

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287849)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте