Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Окремі випадки задач оптимального стохастичного керування

Название: Окремі випадки задач оптимального стохастичного керування
Раздел: Рефераты по коммуникации и связи
Тип: реферат Добавлен 18:42:19 10 декабря 2010 Похожие работы
Просмотров: 8 Комментариев: 10 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

ОКРЕМІ ВИПАДКИ ЗАДАЧ ОПТИМАЛЬНОГО СТОХАСТИЧНОГО КЕРУВАННЯ

1.Зовнішній інтеграл

Функції і можуть бути довільними, а математичні сподівання можна обчислювати, якщо як функція від є вимірною.

Якщо ж оптимальна стратегія, отримана в результаті оптимізації, виявиться невимірною, то і функція може виявитися невимірною. У цьому випадку математичне сподівання невизначено.

Для розв’язання цієї проблеми застосовують два підходи. Перший полягає в накладенні на функції і таких обмежень, які забезпечували б вимірність підінтегральної функції на кожному кроці оптимізації : функції і , , повинні бути неперервними по своїх аргументах і повинна існувати щільність імовірності розподілу випадкової величини , а множини значень припустимих стратегій повинні бути компактними.

На жаль, на практиці ці вимоги не завжди виконуються. Тому другий підхід пов’язаний з використанням зовнішнього інтеграла.

Позначимо через простір елементарних подій, що є довільною множиною, а – деяка система підмножин множини .

Математичним сподіванням випадкової величини , заданої на імовірнісному просторі , називається число , якщо інтеграл з правої частини існує.

Нехай і – борелівські простори, , є -алгеброю в . Функція називається -вимірною, якщо для будь-якої множини . Тут – борелівська -алгебра простору .

Для функції , () зовнішній інтеграл за мірою визначається як нижня грань інтегралів від всіх вимірних функцій (), що мажорують , тобто

, .

Тут – функція розподілу випадкової величини , що відповідає ймовірнісній мірі .

Для довільної функції має місце співвідношення:

,

де , , і вважають, що .

Оскільки зовнішній інтеграл визначений для будь-якої функції, як для вимірної, так і для невимірної, то ніяких додаткових обмежень на функції і накладати не треба.

Для вимірних функцій обидва види математичних сподівань співпадають. Отже, у постановках задач можна замінити звичайне математичне сподівання на зовнішнє, і навіть якщо знайдена при цьому функція виявиться вимірною, то отримана стратегія керування не перестане бути оптимальною.

Зовнішня міра множини визначається співвідношенням .

Для будь-якої множини

,


де – це індикатор множини , що визначається як

а) якщо , то ;

б) якщо і , то ;

в) якщо або , то ;

г) якщо задовольняє рівності , то для будь-якої функції має місце рівність ;

д) якщо , то для будь-якої функції ;

е) якщо і , то . Якщо при цьому хоча б одна з функцій або -вимірна, то останнє співвідношення вірно зі знаком рівності.

Позначимо через дійсну пряму, а через – розширену дійсну пряму і надалі у всіх висновках замість дійсної прямої використовуватимемо поняття розширеної дійсної прямої.

Вважатимемо, що для розширеної дійсної прямої мають місце всі співвідношення порядку додавання і множення, які було введено для , і припустимо, що і .

Позначимо через множину всіх дійсних у розширеному розумінні функцій , де – простір станів.

– банахів простір всіх обмежених дійсних функцій з нормою, що визначається за формулою

, .


Позначатимемо , якщо , , і , якщо , , .

Для будь-якої функції і будь-якого числа позначимо через функцію, що приймає значення в кожній точці , так, що

, .

Припущення монотонності. Для будь-яких станів , керування і функцій мають місце нерівності

якщо і ;

, якщо і ;

, якщо , і .

Для будь-якого стратегія називається -оптимальною при горизонті , якщо

і -оптимальною, якщо

Багато задач послідовної оптимізації, що становлять практичний інтерес, можуть розглядатися як окремі випадки задач загального виду. Розглянемо деякі з них:

· задачі детермінованого оптимального керування;

· задачі стохастичного керування зі зліченним простором збурень;

· задачі стохастичного керування із зовнішнім інтегралом;

· задачі стохастичного керування з мультиплікативним функціоналом витрат;

· задачі мінімаксного стохастичного керування.

2. Детерміноване оптимальне керування

Розглянемо відображення , що задане формулою

, , , (1)

за таких припущень:

функції і відображають множину відповідно в множини і , тобто , ; скаляр додатний.

За цих умов відображення задовольняє припущенню монотонності. Якщо функція дорівнює нулю, тобто , , то відповідна -крокова задача оптимізації (1) набуває вигляду:

, (2)

. (3)

Ця задача є задачею детермінованого оптимального керування зі скінченним горизонтом. Задача з нескінченним горизонтом має наступний вигляд:


, (4)

. (5)

Границя в (4) існує, якщо має місце хоча б одна з наступних умов:

· , , ;

· , , ;

· , , , і деякого .

У задачі (4) – (5) може бути уведене додаткове обмеження на стан системи , . У такому разі, якщо , позначатимемо .

3. Оптимальне стохастичне керування: зліченний простір збурень

Розглянемо відображення , що задане формулою

, (6)

за таких припущень:

параметр приймає значення зі зліченної множини з заданим розподілом ймовірностей , що залежать від і ; функції і відображають множину відповідно в множини і , тобто , ; скаляр додатний.

Якщо , , – елементи множини , – довільний розподіл ймовірностей на , а – деяка функція, то математичне сподівання визначається за формулою


,

де ,

,

.

Оскільки , то математичне сподівання визначене для будь-якої функції і будь-якого розподілу ймовірностей на множині .

Зокрема, якщо , ,… – розподіл ймовірностей на множині , то формулу (6) можна переписати так:

При використанні цього співвідношення треба пам’ятати, що для двох функцій , рівність має місце, якщо виконується хоча б одна з трьох умов:

та ;

та ;

та .

Відображення задовольняє припущенню монотонності. Якщо функція – тотожний нуль, тобто , , то за умови , , функцію витрат за кроків можна подати у вигляді:


(7)

де , .

Ця умова означає, що математичне сподівання обчислюється послідовно по всіх випадкових величинах .

При цьому зміна порядку операцій додавання і узяття математичного сподівання припустима, тому що , , і для довільних простору з мірою , вимірної функції і числа має місце рівність .

Якщо виконується одна з двох нерівностей

або

,

то функцію витрат за кроків можна записати у вигляді:

,


де математичне сподівання обчислюється на добутку мір на , а стани , , виражаються через за допомогою рівняння .

Якщо функція допускає подання у такому вигляді для будь-якого початкового стану та будь-якої стратегії , то -крокова задача може бути сформульована так:

, (8)

. (9)

Відповідна задача з нескінченним горизонтом формулюється так:

, (10)

. (11)

Границя в (10) існує при виконанні будь-якої з трьох наступних умов:

· , , , ;

· , , , ;

· , , , , і деякого .

Математичне сподівання визначається і як звичайний інтеграл, і як зовнішній інтеграл з -алгеброю в множині , що складається із всіх підмножин , в залежності від вимірності або невимірності функцій.

Для багатьох практичних задач виконується припущення про зліченність множини .

Якщо ж множина незліченна, то справа ускладнюється необхідністю обчислення математичного сподівання

для будь-якої функції . Подолання цих труднощів і пов’язане з використанням зовнішнього інтеграла.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Ребятки, кто на FAST-REFERAT.RU будет заказывать работу до 26го мая - вводите промокод iphone, и тогда будете учавствовать в розыгрыше iphone xs)) сам только что узнал, что у них такие акции бывают (п.с. кстати не удивляйтесь что вас перекидывает на сайт с другим названием, так и должно быть)
FAST-REFERAT.RU19:05:43 23 мая 2019
Мне с моими работами постоянно помогают на FAST-REFERAT.RU - можете просто зайти узнать стоимость, никто вас ни к чему не обязывает, там впринципе всё могут сделать, вне зависимости от уровня сложности) у меня просто парень электронщик там какой то, тоже там бывает заказывает))
FAST-REFERAT.RU10:45:02 07 декабря 2018
Спасибо, Оксаночка, за совет))) Заказал курсач, отчет по практике, 2 реферата и дипломную на REFERAT.GQ , все сдал на отлично, и нервы не пришлось тратить)
Алексей21:57:26 15 июля 2018Оценка: 5 - Отлично
Я обычно любые готовые работы покупаю на сайте shop-referat.tk , и свои все там же на продажу выставляю, неплохой доп.заработок. А если там не нахожу то уже на referat.gq заказываю и мне быстро делают.
Оксана15:27:08 11 июня 2018Оценка: 5 - Отлично
Хватит париться. На сайте REFERAT.GQ вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую.
Студент20:48:25 09 июня 2018

Смотреть все комментарии (10)
Работы, похожие на Реферат: Окремі випадки задач оптимального стохастичного керування

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294085)
Комментарии (4230)
Copyright © 2005-2022 HEKIMA.RU [email protected] реклама на сайте