Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Доклад: Исследование влияния технологических факторов на скорость получения и качество пленок оксида к

Название: Исследование влияния технологических факторов на скорость получения и качество пленок оксида к
Раздел: Промышленность, производство
Тип: доклад Добавлен 16:26:31 18 июня 2011 Похожие работы
Просмотров: 212 Комментариев: 16 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Министерство образования и науки Российской Федерации

Томский государственный университет систем управления и радиоэлектроники

(ТУСУР)

Кафедра РЭТЭМ

Доклад

Исследование влияния технологических факторов на скорость получения и качество пленок оксида кремния.

Выполнил студент гр. 232-5:

______ Кравченко К.В.

«__» декабря 2004 г.

Принял:

______ Чикин Е.В.

«__» __________ 2004 г.

- Томск 2004 -

1. Введение.

Общим для диэлектрических пленок различного назначения является требование технологичности, под которой понимают, прежде всего, совместимость процессов получения покрытия с изготовлением структура ИМС в целом. Технологичными следует считать также процессы, осуществляемые при не высоких температурах нагрева пластины и обеспечивающие приемлемую для производства скорость роста пленки. Загрязнения пленки, ухудшающие электрические свойства, должны отсутствовать. Поэтому химическое и электрохимическое выращивание пленок в растворах и электролитах при производстве полупроводниковых ИМС находит ограниченное применение.

Эксплуатационным требованиям достаточно полно отвечает окись кремния, получаемая при нагревании его поверхности в присутствии кислорода (термическое окисление). Термически выращенный окисел SiO2 обладает наилучшими маскирующими свойствами и высокими электрическими параметрами. Склонность окиси кремния к стеклообразованию способствует к получению беспористой пленки. Хорошо растворяясь в плавиковой кислоте, SiO2 в то же время практически стабильна по отношению к смесям HF+HNO3 и другим реагентам, что позволяет эффективно использовать ее в качестве маски при селективном травлении кремния.

Процесс окисления выполняют в эпитаксиальных установках или в однозонных диффузионных печах со специальными газораспределительными устройствами. Он хорошо согласуется с типовыми операциями физико-термической обработки. На практике разгонку примеси при диффузии совмещают с окислением поверхности дорожек. Окисление поверхности после эпитаксии также выполняется на одной установке в едином цикле.

При окислении образуются химические связи между атомами кислорода, в результате чего плотность поверхностных состояний уменьшается на несколько порядков по сравнению с атомарно чистой поверхностью1 . Достаточно толстый переходный слой, существующий на границе SiO2 и Si, обуславливает слабое изменение ТКР, что снижает внутренне натяжение и уменьшает коробление пластин после их охлаждения.

2. Механизм получения пленок SiO 2 методом термического окисления.

Наиболее широко применяемый метод формирования пленок SiO2 – окисление кремния при высоких температурах – термическое окисление.

Пленки SiO2 толщиной 0,5…1 нм образуются на кремнии уже при комнатной температуре как при хранении на воздухе, так и при обработке в различных растворителях, используемых для очистки и травления поверхности.

После образования первого слоя SiO2 на поверхности кремния дальнейший рост слоя может протекать по двум механизмам. Первый механизм предполагает диффузию кислорода через приповерхностный слой SiO2 к поверхности кремния и реакцию на этой поверхности с образованием нового моноатомного слоя SiO2 . Согласно второму механизму к поверхности диоксида диффундирует кремний и соединяется там с кислородом. Экспериментальными исследованиями было доказано, что второй механизм не играет существенной роли в процессе окисления, так как скорость диффузии кремния в диоксидах на несколько порядков меньше скорости диффузии кислорода. Таким образом, механизм окисления складывается из нескольких последовательных стадий: диффузии кислорода (или другого окислителя) из газового потока к поверхности кремниевой пластины; адсорбции кислорода этой поверхностью; реакции окисления кремния – образования первоначального слоя SiO2 ; диффузии окислителя через этот слой к поверхности кремния, где протекает следующая реакция окисления.

Характер зависимости толщины окисла от времени окисления при постоянных температурах и давлении окислителя показан на рисунке 1. Условно эту зависимость можно разбить на четыре участка, каждый из которых может быть аппроксимирован функцией Xo= f(t) определенного вида.

Рисунок 1

Вид зависимости толщины окисла Хо от времени окисления t при постоянных температуре и давлении газообразного окислителя.

Участок 1, соответствующий начальному периоду окисления, описывается линейной функцией Хо/Кс = t. Скорость роста пленки на этом этапе постоянна и определяется скоростью поверхностной реакции: dXo/dt = Kc, где Кс – константа скорости химической реакции на поверхности (мкм/с). Линейный участок отвечает узкому интервалу толщин окисла (~ до 0,01 – 0,02 мкм), которые на практике не применяются.

По мере роста пленки фронт химической реакции продвигается в глубь кремниевой пластины. Все большую роль начинает играть диффузия окислителя через окисел к границе раздела SiO2 – Si. Замедленная доставка кислорода к границе раздела приводит к изменению вида зависимости на линейно-параболическую (участок 2). Здесь kД – константа диффузии окислителя через окисел (мкм2 /с). Скорость роста пленки на этом участке убывает в соответствии с выражением .

На участке 3 скорость процесса окисления ограничена диффузией окислителя через окисел и зависимость толщины от времени приобретает параболический характер . Скорость роста пленки быстро убывает с толщиной: .

На участке 4 толщина растущего окисла приближается к некоторому придельному значению , которое зависит от вида окислителя, его давления в газовой фазе и от температуры процесса. Время, необходимое для диффузии окислителя через окисел, возрастает, что приводит к значительному уменьшению скорости роста пленки, а зависимость становится логарифмической. Процесс окисления на этом этапе не эффективен, его надо заканчивать в конце участка 3.

Константы kД и kС могут быть найдены из уравнения Аррениуса: , где Ea – энергия активации; Т – абсолютная температура; k – постоянная Больцмана; Ко – константа, линейно зависящая от давления газообразного окислителя, а также от кристаллографической ориентации плоскости подложки.

Поскольку kД и kС зависят от температуры, интервалы толщин окисла и времени на каждом участке также зависят от температуры.

Если требуется вырастить пленку максимальной толщины, то выбирают экономически целесообразное время процесса, соответствующее граничной области между 3 и 4 участками. При выращивании пленок расчетной толщины (например, подзатворный окисел в МДП-структурах) процесс заканчивают на 2 или 3 участках. Время окисления жестко контролируют.

Для определения времени, необходимого для окисления, используют экспериментальные зависимости , которые строят обычно в логарифмическом масштабе (рисунок 2).

а) б)

Рисунок 2

Зависимость толщины окисла кремния от времени окисления в сухом кислороде (а) и водяном паре (б) при нормальном давлении (~0,1 МПа).

3. Анализ влияния технологических параметров на процесс окисления кремния.

В зависимости от окислительной среды различают термическое окисление в сухом кислороде, в парах воды и комбинированное.

Термическое окисление в сухом кислороде характеризуется наибольшей продолжительностью вследствие высокой энергии активации процесса диффузии молекул кислорода через растущий окисел (~ 1,3 – 1,4 эВ), что обуславливает малое значение константы диффузии kД . Из рисунка 2,а, видно, что для получения пленки SiO2 толщиной, например, 1 мкм при температуре 1300 о С требуется 15 часов. Преимуществом рассматриваемого процесса является высокое качество пленки, о чем свидетельствует ее высокая плотность (2,27 г/см3 ).

Термическое окисление в атмосфере водяного пара (гидротермальное окисление) значительно ускоряет процесс окисления кремния. Как и при окислении в сухом кислороде, тонкий слой окисла образуется за счет хемосорбции2 . В дальнейшем молекулы воды диффундируют через окисел к границе раздела SiO2 – Si, где происходит реакция H2 O+Si→ SiO2 +H2 . Таким образом, процесс протекает в две стадии. Водород, выделяющийся на границе раздела, достаточно быстро диффундирует к поверхности окисла.

Как следует из рисунка 2,б, окисел толщиной 1 мкм при температуре до 1300 о С получается за 1 час, при снижении температуры до 1000 о С время увеличивается до 4 часов.

Более высокая скорость роста пленки по сравнению с окислением в атмосфере сухого кислорода, объясняется меньшим диаметром молекулы окислителя, меньшей энергией активации процесса диффузии (~ 0,8 эВ) и большей константой диффузии kД . Так как константы диффузии и поверхностной реакции пропорциональны давлению водяного пара, то, повышая давление, можно сокращать время выращивания пленок заданной толщины. Так, при температуре 1000 о С и давлении 2 МПа, пленка толщиной 1 мкм получается примерно за 10 мин. Окисление при повышенном давлении водяного пара (ускоренное гидротермальное окисление) позволяет не только снижать температурное воздействие на пластину, но и получать более толстые (2 – 3 мкм) пленки SiO2 .

Основным недостатком такого процесса является необходимость использовать герметичные и высокопрочные реакторы вместо технологичных проточных систем, так как при высоких температурах и давлениях происходит ускоренная химическая эрозия стенок реактора. Общим недостатком процессов окисления в атмосфере водяного пара является низкое качество получаемых пленок и связанное с этим ухудшение их защитных свойств. Низкая плотность пленок (около 2 г/см3 ) связана с их пористостью из-за наличия водорода и гидроксильных групп ОН.

Комбинированный процесс – процесс окисления во влажном кислороде , когда, меняя соотношение компонентов в смеси, можно получать энергию активации окисления в пределах от 1,4 эВ (для сухого кислорода) до 0,8 эВ (для водяного пара) и соответственно изменять скорость роста пленок в широких пределах. При достаточно больших скоростях роста плотность пленки обычно достигает 2,18 – 2,2 г/см3 .

При термическом окислении в установку кислород подают в зону окисления либо непосредственно с помощью крана 1 (рисунок 3), либо с помощью кранов 2 и 3 через увлажнитель – емкость со сверхчистой (деионизированой) водой, снабженную нагревателем и термометром. В зависимости от расхода кислорода и температуры воды в увлажнителе можно получать различное соотношение компонентов в смеси. При окислении во влажном кислороде температуру в увлажнителе устанавливают обычно в пределах 80-110 о С, расход кислорода составляет ~ 0,5 л/мин. Для окисления кремния в парах воды через увлажнитель, может быть пропущен транспортирующий инертный газ (азот, аргон и т.д.).

В отлаженном процессе термического окисления толщина выращенной пленки контролируется временем окисления. При отладке процесса толщину пленки можно измерить интерференционным методом с помощью микроскопа МИИ-4 (точность измерения +/- 30 нм), для чего предварительно создают «ступеньку» путем полного стравливания окисла с участка поверхности пластины. При достаточном навыке толщину пленки можно определять методом цветовых оттенков, в котором используется свойство окиси кремния менять цвет в зависимости от толщины. Этот метод (относительная погрешность +/- 5%) применяют при толщинах не более 1 мкм.

4. Факторы, влияющие на скорость получения и качество пленок SiO 2 .

При окислении отполированного монокристаллического кремния формируется слой аморфного диоксида кремния. При температурах, близких к комнатной, пленка оказывается весьма не устойчивой. При более высоких температурах (до 1200 о С), применяемых в процессах окисления кремния, аморфный диоксид кремния термодинамически не устойчив и переходит в устойчивую кристаллическую фазу. Такому переходу способствуют центры кристаллизации, создаваемые примесями или несовершенствами структуры. Однако скорость этого перехода при температурах ниже 1000 о С чрезвычайно мала. Механизм перехода подобен тому, который действует в переохлажденной жидкости, быстро превращается в твердое тело при введении маленькой твердой частицы (затравки), например частицы пыли, образующей центр кристаллизации. Подобный процесс кристаллизации в SiO2 может привести к возникновению множества локальных кристаллических областей или других несовершенств структуры, которые нежелательны во всех случаях применения SiO2 в технологии ИМС.

Изучение термического окисления чистого кремния и кремния, легированного донорными и акцепторными примесями, показало, что наличие примесей влияет на скорость окисления. Это влияние обусловлен либо изменением коэффициента диффузии окислителя в слое, либо изменением скорости реакции окислителя на границе раздела Si - SiO2 . Так, при окислении бор стремится прейти из кремния в оксид, поэтому растущий слой обогащен бором, кремний, сильно легированный бором, окисляется быстрее высокоомного (чистого) кремния как при высоких температурах, где справедлив параболический закон роста диоксида, так и при более низких температурах, где выполняется линейный закон. Фосфор, которым может быть легирован кремний n-типа, имеет тенденции переходить в слой диоксида. Поэтому диффузия окислителя в таком слое не отличается от диффузии в диоксиде, растущем на чистом кремнии. Однако присутствие фосфора в кремнии увеличивает скорость химической реакции на поверхности кремния, вследствие чего кремний, сильно легированный фосфором, при температурах ниже 1100 о С окисляется быстрее, чем чистый кремний (так как при низких температурах скорость окисления определяется реакцией на поверхности Si). Особенно резко это различие проявляется при 700…800 о С. При температурах выше 1100 о С увеличение скорости роста диоксида на кремнии, легированном фосфором, практически незаметно.

На скорость термического окисления влияют не только примеси, содержащиеся в в кремниевой подложке, но и примеси ионов гидроокисла и натрия. Ионы гидроокисла, образующиеся в многоступенчатой реакции кремния с парами воды, увеличивают скорость окисления. Что касается натрия, то наличие его на границе раздела между диоксидом и кремнием приводит к каталитическому действию на реакцию окисления кремния, которое сильнее сказывается в присутствии ионов гидроксила, т.е. при окислении в парах воды или влажном кислороде.

Окисление кремния в интервале температур 1100…1300 о С при малом давлении газа (1,198…13,33 Па) характеризуется рядом особенностей. В таких условиях кремний может образовывать летучие оксиды, испаряющиеся с его поверхности, сто приводит к увеличению скорости окисления. При давлении 1,2…5,3 Па на поверхности кремния вообще не образуется слоя SiO2 , а единственным продуктом окисления является летучий монооксид SiO. При давлении кислорода в 13,33 Па образование слоя SiO2 на поверхности кремния происходит с высокой скоростью.

5. Основные недостатки метода термического окисления.

Термическое окисление кремния, позволяет получить высококачественный диэлектрик на поверхности кремния, обладает в то же время рядом ограничений и недостатков. К ним относится, прежде всего, высокая температура процесса, что создает большие затруднения в технологии, особенно при окислении пластин, на которых уже сформированы структуры элементов ИМС. Эти структуры при длительной высокотемпературной обработке значительно изменяют свои характеристики. Поэтому приходится вводить существенные поправки в расчеты, учитывающие влияние диффузионных процессов в структурах ИМС при высоких температурах. Кроме того, термическим окислением можно получать только SiO2 , а технология ИМС использует и другие диэлектрики, особенно для устройств, выполняемых не из кремния, а из различных полупроводниковых соединений (GaAs, GaPи т.п.).

При изготовлении СВЧ ИМС на основе кремния термическое окисление затрудняет формирование прецизионных структур, так как не позволяет формировать точные конфигурации областей изгибов.

Для преодоления этих недостатков в технологии ИМС были разработаны методы формирования диэлектрических пленок осаждением их из газовой или паровой фаз при помощи химических реакций или термовакуумного испарения.

6. Литература.

1. Парфенов О.Д. «Технология микросхем: Учеб. пособие для вузов». – М.: Высш. шк., 1986. – 320 с., ил.

2. Черняев В.Н. «Технология производства интегральных микросхем и микропроцессоров: учебник для вузов». – 2-е изд., перераб. и доп. – М.: Радио и связь, 1987. – 464 с.: ил.

3. Курносов А.И., Юдин В.В. «Технология производства полупроводниковых приборов и интегральных микросхем: Учеб. пособие для студентов вузов». 2-е изд., перераб. и доп. – М.: Высш. школа, 1979. – 367 с., ил.

4. Иваново-Есипович Н.К. «Физико-химические основы производства радиоэлектронной аппаратуры: Учеб. пособие для вузов. – 2-е изд., перераб. и доп. – М.: Высш. школа, 1979. – 205 с., ил.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита03:57:00 04 ноября 2021
.
.03:56:58 04 ноября 2021
.
.03:56:57 04 ноября 2021
.
.03:56:55 04 ноября 2021
.
.03:56:54 04 ноября 2021

Смотреть все комментарии (16)
Работы, похожие на Доклад: Исследование влияния технологических факторов на скорость получения и качество пленок оксида к

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294118)
Комментарии (4230)
Copyright © 2005-2022 HEKIMA.RU [email protected] реклама на сайте