Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Доклад: К расчету эффективных магнитных полей в магнитных жидкостях

Название: К расчету эффективных магнитных полей в магнитных жидкостях
Раздел: Рефераты по физике
Тип: доклад Добавлен 20:56:42 03 февраля 2010 Похожие работы
Просмотров: 6 Комментариев: 25 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

К РАСЧЕТУ ЭФФЕКТИВНЫХ МАГНИТНЫХ ПОЛЕЙ В МАГНИТНЫХ ЖИДКОСТЯХ

Диканский Ю.И.

Один из подходов к определению эффективных полей связан с анализом действующих на дипольную частицу сил [1]. В работе [2] на основании такого анализа получена формула для расчета эффективных электрических полей в жидких диэлектриках. Механический перенос подхода, используемого при ее выводе, возможный благодаря глубокой аналогии между законами электрической поляризации и намагничивания позволяет получить аналогичную формулу для расчета эффективных магнитных полей в магнитных жидкостях в приближении однородности среды:

, (1)

где - напряженность внешнего поля, - магнитная восприимчивость магнитной жидкости, - объемная концентрация ее дисперсной фазы.

Как следует из [3], полученное выражение для эффективного поля согласуется с формулой Лоренц-Лоренца при выполнении условия

, (2)

которое непосредственно следует из того, что функция Клаузиса-Моссоти не зависит от плотности (концентрации диполей):

(3)

Выражение (1) для эффективного поля может быть представлено в виде , т.е. , откуда для параметра эффективного поля следует:

. (4)

Полученная формула позволяет рассчитать параметр эффективного поля по экспериментально полученной зависимости .

Изучение диполь-дипольного взаимодействия однодоменных дисперсных частиц возможно также с помощью анализа температурных зависимостей магнитной восприимчивости магнитных жидкостей. Выражение для расчета эффективного поля можно получить, воспользовавшись подходом, предложенным в [2], возможным благодаря непосредственной связи эффективного поля с действующей на частицу среды силой. При этом, естественно воспользоваться результатами макроскопической теории для объемной плотности сил в магнитном поле. Ранее, выражение для таких сил выводилось во многих работах [3-5] путем приравнивания вариации свободной энергии (при постоянной температуре и векторном потенциале магнитного поля) работе внутренних сил. Вместе с тем авторами работы [6] было показано, что в более общем случае, при вычислении вариации полной (или внутренней) энергии необходимоучитывать вариации температур или энтропий. Если осуществить некоторое виртуальное перемещение элемента магнитной жидкости , находящейся в магнитном поле Н (например, в поле соленоида) так, что часть жидкости вытиснится из пространства, занимаемого полем, то изменение энергии поля, соответствующее изотермическому процессу может быть записано в виде, аналогичном выведенного в [3] для жидкого диэлектрика:

, (5)

где - концентрация дипольных частиц.

Можно предположить, что в общем случае, с учетом изменения температуры это выражение должно быть дополнено слагаемым , т.е. . Изменение температуры определится выражением для магнетокалорического эффекта:

. (6)

Тогда, с учетом предложенного характера виртуального перемещения и выражения для изменения температуры можно получить:

(7)

Наложим ограничение на процесс виртуального перемещения, предположив, что оно не сопровождается изменением концентрации дипольных частиц. В этом случае, второй член в выражении (5) можно положить равным нулю. Тогда, окончательно, для изменения полной энергии с учетом получим:

. (8)

Приравняем полученное выражение для работе пондеромоторных сил, взятой с обратным знаком, т.е. . С учетом этого, нетрудно получить:

.

Используя соотношения векторного анализа

,

. (9)

С учетом того, что , получим:

. (10)

В работе [2] для плотности сил в дипольном приближении найдено следующее выражение:

(11)

Приравнивая (10) и (11), с учетом отсутствия в МЖ пространственной дисперсии и токов проводимости, получим:

(12)

Из формулы (12) видно, что величина эффективного поля связана с магнитной восприимчивостью и ее производной по температуре и может быть рассчитана при использовании зависимости магнитной восприимчивости от температуры. По-видимому, впервые (12) было приведено нами в работе [7] без вывода.

Условие согласуемости (12) с формулой Лоренц-Лоренца для эффективного поля имеет вид:

(13)

Соотношение (13) может быть использовано для оценки в случае применимости формулы Лоренц-Лоренца.

Проверим справедливость полученной формулы (12) для некоторых известных функциональных форм зависимости магнитной восприимчивости от температуры.

В случае парамагнитной жидкости для температурной зависимости магнитной восприимчивости справедлив закон Кюри:

и (14)

Подставив эти выражения в формулу (12), получим: , что и следовало ожидать для системы с невзаимодействующими частицами.

Для парамагнитной жидкости, с магнитной восприимчивостью, подчиняющейся закону Кюри-Вейсса,

, , (15)

где - температура Кюри. Формула (12) в этом случае дает:

(16)

Приравняв (16) к выражению для эффективного поля, записанного в виде и учитывая, что , получим:

(17)

Последнее соотношение, с учетом выражения (15) для дает , что, как известно, следует также непосредственно из закона Кюри-Вейсса. Проведенные оценки позволяют предположить возможность применения формулы (12) для расчета эффективных полей и при других формах зависимости , в том случае, когда выполняется поставленное при ее выводе требование однородности среды.

Литература

1. Де Грот С., и Мазур П. Неравновесная термодинамика.- М.: Мир, 1964.-456 с.

2. Бараш Ю.С. О макроскопическом описании действующего поля в некоторых диэлектриках.// ЖЭТФ.-Т.79, вып.6.-С.2271-2281.

3. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. -М.: Наука.-1982.-623 с.

4. 4.Стреттон Д. Теория электромагнетизма.- М.-Л.: Гостехиздат, 1948.-312 с.

5. Пановский В., Филипс М. Классическая электродинамика.- М.: Гостехиздат, 1957.

6. Гогосов В.В., Налетова В.А., Шапошникова Г.А. Гидродинамика дисперсных систем, взаимодействующих с электромагнитным полем.// Механика жидкости и газа.- №3.-1977.- С.62-70.

7. Диканский Ю.И. Экспериментальное исследование эффективных полей в магнитной жидкости.// Магнитная гидродинамика.- 1982.- №3. – С.33-36.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита04:09:01 04 ноября 2021
.
.04:08:59 04 ноября 2021
.
.04:08:58 04 ноября 2021
.
.04:08:56 04 ноября 2021
.
.04:08:55 04 ноября 2021

Смотреть все комментарии (25)
Работы, похожие на Доклад: К расчету эффективных магнитных полей в магнитных жидкостях

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287185)
Комментарии (4157)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте