Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Экономико-статистический анализ эффективности производства зерна Зуевского и Оричевского районов

Название: Экономико-статистический анализ эффективности производства зерна Зуевского и Оричевского районов
Раздел: Рефераты по маркетингу
Тип: реферат Добавлен 05:25:57 10 сентября 2011 Похожие работы
Просмотров: 19 Комментариев: 21 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Министерство сельского хозяйства Российской Федерации

Федеральное государственное общеобразовательное учреждение

Высшего профессионального образования

«Вятская государственная сельскохозяйственная академия»

Экономический факультет

Кафедра статистики и математического моделирования

экономических процессов

Курсовая работа

по статистике

Экономико-статистический анализ эффективности производства зерна Зуевского и Оричевского районов

Выполнила: Шубина А.Е.

Руководитель: Изергина Екатерина Александровна

Регистрационный номер:

Дата сдачи на проверку:

Оценка после защиты:

Киров 2011

Содержание

Введение………………………………………………………………………...3

1. Экономические показатели условий и результатов деятельно-

сти с.-х.. предприятий………………………………………………………….5

2. Оценка параметров и характера распределения статистической сово-

купности……………………………………………………………………….11

3. Экономико-статистический анализ взаимосвязей между признака-

ми изучаемого явления………………………………………………………..20

Заключение…………………………………………………………………40

Список литературы………………………………………………………...42

Приложения

Введение

Решающее значение для подъема всех отраслей сельского хозяйства имеет наращивание производства зерна. Зерновое хозяйство составляет основу растениеводства и всего сельскохозяйственного производства. Это определяется многосторонними связями зернового производства с сопредельными отраслями сельского хозяйства и промышленности.

Практика показывает, что без развитого зернового производства невозможно специализировать экономические районы на производство продукции животноводства, развивать производство технических культур и других отраслей сельского хозяйства. Зерно – это не только продукт питания для населения, но и незаменимый корм для скота и птицы. Зерно служит важным источником сырья для пивоваренной, спиртовой, комбикормовой промышленности.

В стоимости продукции растениеводства зерновые культуры занимают около 40%, а в структуре посевных площадей на их долю приходится почти 55%. На производство зерна затрачивается 25% всех затрат труда в растениеводстве.

Зерно, как сельскохозяйственная продукция, в экономическом отношении имеет ряд преимуществ. Оно хорошо хранится в сухом виде, легко перевозится на большие расстояния, имеет высокую степень сыпучести. Все эти особенности зерна используют при строительстве элеваторов, зернохранилищ, а также при транспортировке и создании государственных запасов продовольствия и кормов.

Основными направлениями дальнейшего увеличения объемов производства и повышения эффективности возделывания зерновых культур является последовательная интенсификация на базе развития химизации и мелиорации, внедрения прогрессивных технологий выращивания и уборки зерна, применение новых более продуктивных сортов и гибридов зерновых культур. Немаловажное значение в повышении эффективности производства зерна отводится выбору каналов реализации, повышению качества продукции, государственной поддержке зернового производства, а также росту материальной заинтересованности при выращивании зерновых культур.

Целью курсовой работы является проведение экономико-статистического анализа эффективности производства зерна в исследуемых 23 хозяйствах Зуевского и Оричевского районах.

В данной курсовой работе ставлю задачи: дать экономическую характеристику изучаемому объекту, дать обоснование объема и оценки параметров статистической совокупности, провести экономико-статистический анализ, рассчитать нормативы и провести анализ эффективности использования факторов на их основе, сделать обобщающие выводы.

Объектом выступает сельскохозяйственные предприятия Зуевского и Оричевского районов.

1. Экономические показатели условий и результатов деятельности с.-х. предприятий

Экономическую характеристику хозяйств начнем с оценки размера производства продукции в них. Для этого для каждого района (Зуевского и Оричевского) и в среднем по совокупности определим показатели наличия среднегодовой стоимости основных производственных фондов, среднесписочной численности работников сельскохозяйственного производства, выручки и прибыли от продаж сельскохозяйственной продукции.

Показатели определим в расчете на одно предприятие. Показатели представим в статистической таблице.

Таблица 1 – Показатели размера предприятий

Показатель В среднем на 1 предприятие В среднем по совокупности
Зуевский район Оричевский район
Выручено от продажи с.-х.. продукции, тыс. руб. 50350 28690 39990

Среднесписочная численность работников,

всего чел.

в т.ч. занятых в с.-х. производстве, чел.

203

176

159,5

146,3

182

162

Среднегодовая стоимость основных производственных фондов, тыс.руб. 139319 71429 106850
Материальные затраты на производство с.-х. продукции, тыс. руб.

40153

23630

32251

Поголовье коров, гол. 495 474 485
Посевная площадь зерновых культур, га 2740 976,5 1778

Давая анализ размеров предприятий, можно сказать, что показатели на 1 предприятие в Зуевском районе в среднем больше, чем показатели по совокупности. Также, можно сделать вывод, что показатели Зуевского района превышают показатели Оричевского района.В Зуевском районе выше среднегодовая стоимость основных производственных фондов на 67890тыс.руб. по сравнению с Оричевским районом.

Для определения специализации предприятий, т.е. их производственного направления, необходимо изучение структуры выручки по отраслям и видам реализованной продукции (таблица 2).

Таблица 2 – Состав и структура выручки от продаж с.-х. продукции

Продукция Всего выручки, тыс.руб. В % к итогу

Зуев-

ский

район

Оричев-

ский

район

по сово-

купности

Зуев-ский

район

Оричев-

ский

район

по сово-

купности

Продукция расте-

ниеводства, всего

84000

8129

92129

13,9

2,6

10,0

в т.ч.:

- зерно

- прочая продукция

45840

38160

6131

1998

51971

40158

7,6

6,3

1,9

0,6

5,7

4,4

Продукция живот-

новодства, всего

520197

307459

827656

86,1

97,4

90,0

в т.ч.:

- молоко

- мясо КРС

- прочая продукция

204462

116511

199224

215082

82797

9580

419544

199308

208804

33,8

19,3

33,0

68,2

26,2

3,0

45,6

21,7

22,7

Всего 604197 315588 919785 100 100 100

Из данных таблицы 2 можно сделать вывод о том, что выручка от продажи сельскохозяйственной продукции (всего) в Зуевском районе в среднем выше, чем по совокупности. Основная выручка в среднем на 1 предприятие как в Зуевском так и в Оричевском районах, так и по совокупности приходится на продукцию животноводства (86,1 %, 97,4%, 90,0% соответственно). И лишь небольшой процент приходится на продукцию растениеводства ( в Зуевском районе – 13,9%, в Оричевском–2,6%, по совокупности – 10,0%).

Для характеристики ресурсного потенциала предприятий изучаемой совокупности определим следующие показатели:

Производительности труда - выручка в расчете на одного среднесписочного работника.

Фондовооруженность - среднегодовая стоимость основных производственных фондов, приходящихся на одного работника.

Фондоотдача - величина выручки, полученная в расчете на 100 руб. основных фондов.

Фондоемкость - (показатель, обратный фондоотдаче) позволяет судить об использовании основных производственных фондов.

Материалоотдача– выручка в расчете на 100 руб. материальных затрат.

Данные показатели представлены в таблице 3.

Таблица 3 – Обеспеченность и эффективность использования ресурсного

потенциала предприятий

Показатель В среднем
По районам области по совокупности по области
Зуевский район Оричевский район
Доля работников,занятых в с.х.произ-ве,в общей числ-ти работающих, %

86,8

91,7

88,9

89,2

Приходится на 1 работника, тыс.руб.:

- выручки от продаж

- затрат на оплату труда

286,1

43,8

196,1

69,6

247,2

54,9

176,0

46,0

Фондовооруженность, тыс.руб. 791,6 488,3 660,5 899,6
Фондоотдача, руб. 0,36 0,4 0,37 0,20
Фондоемкость, руб. 2,77 2,49 2,67 5,11
Материалоотдача, руб. 1,25 1,21 1,23 1,16

Из таблицы видно что выручка на 1 работника в исследуемых хозяйствах в среднем выше, чем по области. В Зуевском районе этот показатель несколько выше, чем по совокупности, а в Оричевском несколько ниже.

Фондовооруженность в Зуевском районе выше, чем в Оричевском и в среднем по совокупности, но ниже чем по области.

Фондоотдача показывает сколько единиц денежной выручки получено с каждого рубля, вложенного в основные фонды. Чем лучше используются основные фонды, тем выше показатель фондоотдачи. В нашем случае показатель фондоотдачи небольшой, следовательно основные фонды используются не в полном объеме и не эффективно. Самый высокий показатель фондоотдачи в Оричевском районе, но он отличается от Зуевского лишь на 0,04 . По области фондоотдача лишь 0,20.

Фондоемкость показывает сколько единиц фондов нужно вложить в производство для получения единицы денежной выручки.

Фондоемкость по области самая высокая (5,11 руб.). В Зуевском районе она выше, чем в среднем по совокупности, а в Оричевском ниже.

Материалоотдача по Зуевскому району выше, чем по Оричевскому району, по совокупности по двум районам и даже по области.

Эффективность деятельности предприятий определяется эффективностью производства отдельных видов продукции. Для сельскохозяйственных предприятий такими показателями являются урожайность, удой молока от 1 коровы, среднесуточный прирост, себестоимость производства единицы продукции (Таблица 4).

Таблица 4 – Эффективность производства с.-х. продукции

Показатель В среднем по хозяйствам районов
Зуевский район Оричевский район Совокупность 2-х районов
Урожайность зерновых, ц/га 16,5 19,7 18,1
Удой молока от 1 коровы, ц 52,72 60,79 56,76
Среднесуточный прирост, г 563 612 587,5
Себестоимость 1 ц зерна, руб. 262 269 265,5
Себестоимость 1 ц молока, руб. 454 607 530,5
Себестоимость 1 ц прироста крупного рогатого скота, руб.

4370

5533

4951,5

Давая анализ эффективности производства сельскохозяйственной продукции, можно сказать, что такие показатели как удой молока, себестоимость 1 центнера молока и себестоимость 1 центнера прироста крупного рогатого скота в Зуевском районе ниже, чем в Оричевском и по совокупности.

Анализ состава и структуры затрат, формирующих себестоимость продукции, может быть проведен на основе показателей, представленных в таблице 5.

Таблица 5 – Состав и структура затрат на производство с.-х. продукции

Элементы затрат Зуевский район Оричевский район
тыс. руб. % к итогу тыс. руб. % к итогу
Оплата труда с отчислениями на социальные нужды

92498

14,9

111930

27,92

Материальные затраты 484840 78,1 259928 64,8
Амортизация основных средств 39118 6,3 15205 3,8
Прочие затраты 7367 1,19 13752 3,4
Итого затрат по основному производству

620823

100

400815

100

По данным таблицы можно сделать следующие выводы: самый высокими затратами в этих районах приходятся материальные (в Зуевском –78,1%, вОричевском–64,8%); остальные затраты не так значительны; итого затрат в Зуевском районе больше чем в Оричевском на 220008 тыс. руб. следовательно себестоимость продукции в Зуевском районе выше чем в Оричевском.

Обобщающая оценка результатов производственно-финансовой деятельности предприятий дается на основе таких показателей, как окупаемость затрат, прибыль и рентабельность (таблица 6).

Окупаемость затрат – соотношение выручки от продажи и полной себестоимости проданной продукции.

Рентабельность – отношение прибыли от продаж к выручке.

Таблица 6 – Финансовые результаты деятельности предприятий

Показатель В среднем
по районам области

По

совокупности

Зуевский район Оричевский район

Приходится на 1 предприятие, тыс.руб.:

- полной себестоимости с.-х. продукции

- выручки от продаж

- прибыли (+),убытка (-)

38411

48727

10316

34191

45113

10922

36301

46920

10619

Окупаемость затрат, руб. 1,41 1,32 1,37
Рентабельность продаж, % 21,2 24,2 22,7

Анализируя таблицу 4, можно сделать вывод, что в Зуевском и Оричевском районе полная себестоимость реализуемой продукции окупается, так как полученная выручка от этой реализации в 1,3 раза выше себестоимости в Зуевском и Орич-м районах. Следовательно разница между выручкой и полной себестоимостью будет равна прибыли, которую в среднем получает каждое из исследуемых хозяйств Зуевского и Куменского района и которая составляет соответственно 10316 тыс.руб. и 10922 тыс.руб.

Уровень рентабельности показывает повышение средств, которые получены в изучаемом периоде в результате эффективности текущих затрат. Он зависит от цен на сырье, от качества продукции, производительности труда, материальных и других затрат на производство.

В среднем по совокупности предприятия получают прибыль, которая составляет 10619 тыс. руб

2. Оценка параметров и характера распределения статистической совокупности

Выявление основных свойств и закономерностей исследуемой статистической совокупности необходимо начинать с построения ряда распределения единиц по одному из характеризующих их признаков. Оценка параметров ряда распределения позволит сделать вывод о степени однородности статистической совокупности, о возможности использования ее единиц для проведения научно обоснованного экономического исследования.

Рассмотрим порядок построения ряда распределения 23 хозяйств области по урожайности зерновых.

Так как данный признак изменяется непрерывно, строится вариационный ряд распределения.

1.Составим ранжированный ряд распределения предприятий по урожайности, т.е. расположим их в порядке возрастания по данному признаку (ц/га):6,3 7,7 11,6 12,4 13,3 13,7 14,8 15,1 15,2 16,6 18,8 18,8 19,6 20,1

20,5 20,8 21,0 22,0 22,1 25,8 26,0 28,6

2. Определим количество интервалов (групп)

k = 5

3. Определим шаг интервала:

где xmax и xmin - наименьшее и наибольшее значение группировочного признака

k – количество интервалов.

≈ 4,5 (руб.)

4. Определяем границы интервалов.

Для этого xmin = 6,3 принимаем за нижнюю границу первого интервала, а его верхняя граница равна: xmin + h = 6,3 + 4,5 = 10,8. Верхняя граница первого интервала одновременно является нижней границей второго интервала. Прибавляя к ней величину интервала (h), определяем верхнюю границу второго интервала: 10,8 +4,5= 15,3

Аналогично определяем границы остальных интервалов.

5. Подсчитаем число единиц в каждом интервале и запишем в виде таблицы.

Таблица 8 – Интервальный ряд распределения хозяйств по урожайности

зерновых

Группы хозяйств по урожайности зерновых, ц/га Число хозяйств
6,3 – 10,8 2
10,8 – 15,3 7
15,3 -19,8 4
19,8 – 24,3 6
24,3 – 28,8 3
Итого 22

Для наглядности интервальный ряд распределения изобразим графически в виде гистограммы.

Для выявления характерных черт, свойственных ряду распределения единиц могут быть использованы следующие показатели.

1) Для характеристики центральной тенденции распределения определяют среднюю арифметическую, моду и медиану признака.

Средняя величина признака определяется по формуле средней арифметической взвешенной:

,

где xi - варианты,

– средняя величина признака;

fi – частоты распределения.

В интервальных рядах в качестве вариантов (xi ) используют серединные значения интервалов.

= ц/га

Мода – наиболее часто встречающееся значение признака, может быть определена по формуле

,

где xmo – нижняя граница модального интервала;

h– величина интервала;

Δ1 – разность между частотой модального и домодального интервала;

Δ2 – разность между частотой модального и послемодального интервала.

В данной работе нужно определять две моды:

,

Медиана – значение признака, находящегося в центре ранжированного ряда распределения, определяется по формуле:

где xme – нижняя граница медиального интервала;

h – величина интервала;

Σfi – сумма частот распределения;

Sme -1 – сумма частот домедиальных интервалов;

fme – частота медиального интервала

2) Для характеристики меры рассеяния признака определяют показатели вариации: размах вариации, дисперсию, среднее квадратическое отклонение, коэффициент вариации.

Размах вариации составит: R = xmax – xmin = 28,6 – 6,3 = 25,5 (ц/га)

Дисперсия определяется по формуле

Среднее квадратическое отклонение признака в ряду распределения составит:

(ц/га).

Для определения коэффициента вариации используем формулу

3) Для характеристики формы распределения могут быть использованы коэффициенты асимметрии (Аs ) и эксцесса (Еs ):

Т.к. >0, распределение имеет правостороннюю асимметрию, о которой также можно судить на основе следующего неравенства: <<

Т.к. Es <0, распределение является низковершинным по сравнению с нормальным.

Для того чтобы определить подчиняется ли эмпирическое (исходное) распределение закону нормального распределения, необходимо проверить статистическую гипотезу о существенности различия частот фактического и теоретического (нормального) распределения.

Наиболее часто для проверки таких гипотез используют критерий Пирсона (χ2 ), фактическое значение которого определяют по формуле

где fi и fm – частоты фактического и теоретического распределения.

Теоретические частоты для каждого интервала определим в следующей последовательности:

1) Для каждого интервала определим нормированное отклонение (t):

Например, для первого интервала и т.д.

Результаты расчета значений t представим в таблице 9.

2) Используя математическую таблицу “Значения функции ” , при фактической величине t для каждого интервала найдем значение функции нормального распределения (таблица 9).

3) Определим теоретические частоты по формуле fm = ,

где n – число единиц в совокупности;

h – величина интервала.

n = 21, h= 5,1, σ = 6,971

Таблица 9 – Эмпирическое и теоретическое распределение предприятий по

урожайности зерновых

Срединное значение интервала по урожайности,ц Число хозяйств
fi t табличное fm -
7,45 6 1,11 0,2155 4 1,00
12,55 6 0,38 0,3712 6 0,00
14,65 4 0,35 0,3752 6 0,67
22,75 2 1,08 0,2227 4 1,00
27,85 3 1,81 0,0775 1 4,00
Итого 21 x x 21 6,67

4) Подсчитаем сумму теоретических частот и проверим ее равенство фактическому числу единиц, т.е..(21=21)

Таким образом, фактическое значение критерия составило =6,67.

По математической таблице “Распределение χ2 ” определяем критическое значение критерия χ2 при числе степеней свободы (ν) равном числу интервалов минус единица и выбранном уровне значимости (в экономических исследованиях чаще всего используют уровень значимости равный 0,05). При ν = 5 – 1 = 4 и α=0,05 =9,95

Поскольку фактическое значение критерия () меньше табличного (), отклонение фактического распределения от теоретического следует признать несущественным.

Таким образом, средняя урожайность зерновых составила 15,2 ц с 1 га при среднем квадратичном отклонении 6,97 ц/га.

Так как коэффициент вариации больше 33%, совокупность единиц является неоднородной: V=45,9%.

Эмпирическое распределение имеет правостороннюю асимметрию, т.к. <<и >0 и является низковершинным по сравнению с нормальным распределением, т.к. <0. При этом отклонение фактического распределения от нормального является несущественным. Следовательно, исходную совокупность единиц можно использовать для проведения экономико-статистического исследования при условии исключения из нее нетипичных предприятий.

3.Экономико-статистический анализ взаимосвязей между признаками изучаемого явления.

3.1 Метод статистических группировок

Статистическая группировка – разбиение (разделение) множества единиц изучаемой совокупности на группы по определенным, существенным для них признакам и характеристика этих групп через систему показателей.

Метод статистической группировки применяют для решения следующих основных задач:

1) выделение социально-экономических типов явлений для последующего изучения;

2) изучение структуры явления и происходящих в нем структурных сдвигов;

3) выявление связей и зависимостей между признаками явлений.

Проведем аналитические группировки по различным признакам.

Аналитическая группировка применяется для изучения взаимосвязей между отдельными признаками изучаемого явления. При этом зависимые признаки называются результативными, а оказывающие на них влияние – факторными.

Используем две группировки: затраты на 1 га посева и урожайность зерновых; урожайность зерновых и себестоимость 1 ц зерна.

Первая группировка:

Таблица 10 – Исходные данные по предприятиям Зуевского и Куменского районов для первой группировки

№ предприятия Затраты на 1 га посева, руб. Урожайность зерновых, ц/га
1 8330 28,6
2 7959 22,1
3 2244 6,3
4 4129 11,6
5 3425 15,1
6 4573 18,8
7 3451 12,4
8 1672 7,7
9 2811 13,7
10 5290 20,1
11 5762 20,8
12 2489 9,0
13 4602 13,2
14 2962 13,6
15 11108 30,4
16 2146 4,9
17 6365 27,5
18 3081 6,4
19 3181 9,3
20 3758 16,8
21 5217 18,7

1) В качестве факторного признака берем затраты на 1 га посева, в качестве результативного признака – урожайность зерновых. По результатам группировки можно будет сделать вывод о том как с изменением факторного признака (затраты на 1 га) изменяется в среднем результативный признак, т.е. урожайность зерновых.

2) Построим ранжированный ряд по группировочному признаку (т.е. располагаем их в порядке возрастания):

Таблица 11 – Ранжированный ряд предприятий по затратам на 1 га посева

№ предприятия Затраты на 1 га посева, руб. Урожайность зерновых, ц/га
8 1672 7,7
16 2146 4,9
3 2244 6,3
12 2489 9,0
9 2811 13,7
14 2962 13,6
18 3081 6,4
19 3181 9,3
5 3425 15,1
7 3451 12,4
20 3758 16,8
4 4129 11,6
6 4573 18,8
13 4602 13,2
21 5217 18,7
10 5290 20,1
11 5762 20,8
17 6365 27,5
2 7959 22,1
1 8330 28,6
15 11108 30,4

Отбросим последнее значение (11108), т.к. оно резко отличается от остальных значений. Таким образом имеется 20 предприятий. Определим количество групп (k): при n<40 единиц оптимальное количество групп равно 3-4, значит n=20,k=3.

3)Определим величину интервала групп:

, где -наибольшее, - наименьшее значение группировочного признака; -количество групп.

В связи с тем, что при проведении аналитических группировок число единиц в группах должно быть достаточно большим (не менее 5), при заданном объеме совокупности (около 30 предприятий), выделим 3 группы (К=3).

руб.

Затем определим границы интервалов групп и число предприятий в этих группах (от до + iи т.д.):

1 группа (1672 - 3891) – 11 предприятий;

2 группа (3891 - 6110) – 6 предприятий;

3 группа (6110 - 8329) – 4 предприятий.

В данном случаи нужно провести перегруппировку. Проведём перегруппировку, анализируя интенсивность изменения группировочного признака в ранжированном ряду:

1 группа (до 2811) – 4 предприятия;

2 группа (2811 - 5290) – 12 предприятий;

3 группа (свыше 5290) – 4 предприятия.

Таблица 12 – Сводные данные по группам

Группы предприятий по затратам на 1 га посева, руб. Число предприятий Затраты на 1 га посева, руб. Урожайность зерновых, ц/га
до 2811 4 8551 27,9
2811 – 5290 12 46480 169,7
свыше 5290 4 28416 99
Итого 20 83447 296,6

Далее определим взаимосвязь между показателями затрат на 1 га посева и урожайности зерновых с помощью таблицы 13.

Таблица 13 – Влияние затрат на 1 га посева на урожайность зерновых

Группы предприятий по затратам на 1 га посева, руб.

Число

предприятий

В среднем по группам
Затраты на 1 га посева, руб. Урожайность зерновых, ц/га
до 2811 4 2138 7,0
2811 – 5290 12 3873 14,1
свыше 5290 4 7104 24,8
В среднем по совокупности 20 4172 14,8

Сравнивая показатели по группам можно сделать вывод о том, что с увеличением затрат на 1 га посева зерновых их урожайность в среднем возрастает.

Так, во второй группе предприятий средний уровень затрат на 1 га больше, чем в первой, на 3873 – 2138 = 1735 руб., или на 81,2%. При этом урожайность зерновых во второй группе выше на 14,1-7,0 = 7,1 ц/га или на 101,4%, т.е. увеличение затрат от первой ко второй группе на 100 руб. в расчете на каждый гектар посева приводит к среднему увеличению урожайности на 7,1/1735·100=0,4 ц/га.

Рост уровня затрат в третьей группе по сравнению со второй на 83,4% приводит к росту урожайности на 75,9%, а на каждые 100 рублей увеличения затрат приходится (24,8-14,1)/(7104-3873)·100=0,3 ц увеличения урожайности.

3.2 Дисперсионный анализ

Для оценки существенности различия между группами по величине какого-либо признака рекомендуется использовать критерий Фишера (F-критерий), фактическое значение которого определяется по формуле:

где - межгрупповая дисперсия

- остаточная дисперсия

Методом дисперсионного анализа при уровне значимости 0,05 дадим статистическую оценку влиянию затрат на 1 га посева на урожайность зерновых.

где - средняя группировка

- средняя общая

m- число групп

n- число вариантов в группе

Определим , используя данные таблицы 13:

=

где - общая вариация

- межгрупповая вариация (229,55)

N- общее число вариантов (20)

Общая вариация определяется по формуле:

Где

- общая средняя из таблицы 11 =14,8 ц/га

Определим общую вариацию урожайности:

=

=

Для того, чтобы найти Fтабл., нужно найти число степеней свободы для межгрупповой и остаточной дисперсии. Fтабл.= 3,55

Поскольку Fфакт > Fтабл (12,9>3,55), то можно признать различия между группами существенными; уровень интенсивности производства (затраты на 1 га) существенно влияет на урожайность зерновых.

Величина эмпирического коэффициента детерминации, равная показывает, что на 73,7% вариация урожайности объясняется влиянием уровня затрат на 1 га посева.

Методом дисперсионного анализа при уровне значимости 0,05 дадим статистическую оценку влияния урожайности зерновых на себестоимость производства 1 ц зерна.

Определим , используя данные таблицы 17 (- общая средняя из таблицы 11 =297 руб.):

Wобщ = (329-297)2 +(328-297)2 +(352-297)2 +(355-297)2 +(222-297)2 +(239-297)2 +(277-297)2 +(214-297)2 +(205-297)2 +(262-297)2 +(265-297)2 +(276-297)2 +(347-297)2 +(218-297)2 +(357-297)2 +(438-297)2 +(229-297)2 +(477-297)2 +(340-297)2 +(221-297)2 +(279-297)2 = 113001

;

;, значит Fтабл.= 3,55

Поскольку Fфакт < Fтабл (2,9<3,55), то можно признать различие между группами не существенными; урожайность зерновых не существенно влияет на себестоимость 1 ц зерна.

Величина эмпирического коэффициента детерминации, равная , показывает, что на 24,1% себестоимость 1ц зерна обуславливается влиянием урожайности зерновых.

3.3. Корреляционно-регрессионный анализ

Корреляционно – регрессионный анализ – это метод математической статистики, используемый для изучения корреляционной связи между признаками явлений.

Рассмотрим взаимосвязь между урожайностью (x1 ), уровнем затрат на 1 га посева зерновых (x2 ) и себестоимостью производства 1 ц зерна (Y).

Будем использовать следующее уравнение:

Y=a0 +a1 x1 +a2 x2

Параметры a0 , a1 , a2 определим в результате решения системы трех нормальных уравнений:

Расчетные данные (приложение 2)

Преобразуем систему:

Вычтем из второго уравнения системы первое, а затем из третьего второе, получим:

Преобразуем полученную систему:

Вычтем из второго уравнения системы первое:

-426,6=-6988,16а2

а2 =0,06

Подставив а2 в уравнения системы, найдем а1 и а0

а1 =-19,92

а0 =336,66

В результате решения данной системы на основе исходных данных по 19 предприятиям получаем следующее уравнение регрессии:

Y=336,66-19,92x1 +0,06x2

Коэффициент регрессии а1 =-19,92 показывает, что при увеличении урожайности на 1 ц с га себестоимость 1 ц зерна снижается в среднем на 19,92 руб. (при условии постоянства уровня интенсивности затрат). Коэффициент а2 =0,06 свидетельствует о среднем увеличении себестоимости 1 ц зерна на 0,06 руб. при увеличении уровня затрат производства на 1 руб. в расчете на 1 га посева зерновых (при постоянстве урожайности).

Теснота связи между признаками, включаемыми в модель, может быть определена при помощи коэффициентов множественной корреляции:

где , , - коэффициенты парной корреляции между x1 , x2 и y. В общем виде формулы для нахождения данных коэффициентов можно представить следующим образом:

; ; ;

; ; ;

; ; ;

; ; =

; ;

;

; ;

=;

;

;

R=

Между себестоимостью (y) и урожайностью (x1 ) связь обратная слабая, между себестоимостью и уровнем затрат на 1 га посева зерновых (x2 ) связь прямая слабая. При этом имеет место мультиколлинеарность, т. к. между факторами существует более тесная связь (0,904), чем между вторым фактором и результатом (0,096). Данное явление свидетельствует о неудачном выборе второго фактора, который следовало бы исключить из регрессионной модели, заменив его другим.

Между всеми признаками связь тесная, т.к. R=0,610. Коэффициент множественной детерминации Д=0,6102 *100=37,2% вариации себестоимости производства 1ц зерна определяется влиянием факторов, включенных в модель.

Для оценки значимости полученного коэффициента R воспользуемся критерием Фишера, фактическое значение которого определяется по формуле:

,

где n – число наблюдений,

m - число факторов.

F табл определяется при заданном уровне значимости (0,05) и числе степеней свободы: V1 = n m и V2 = m – 1 . Для нашего случая V1 =19, V2 =1, F табл = 4,35.

Поскольку F факт > F табл , значение коэффициента R следует считать достоверным, а связь между x1 , x2 и y - тесной.

Для оценки влияния отдельных факторов и резервов, которые в них заложены, также определяют коэффициенты эластичности, бета - коэффициенты, коэффициенты отдельного определения.

Коэффициенты эластичности показывают, на сколько % в среднем изменяется результативный признак при изменении факторного на 1% при фиксированном положении другого фактора:

Таким образом, изменение на 1% урожайности ведет к среднему снижению себестоимости на 1,04%, а изменение на 1% уровня затрат - к среднему ее росту на 0,91%.

При помощи β - коэффициентов даётся оценка различия в степени варьирования вошедших в уравнение факторов. Они показывают, на какую часть своего среднего квадратического отклонения () изменится результативный признак при изменении соответствующего факторного на величину своего среднего квадратического отклонения (). β-коэффициенты вычисляются следующим образом:

Это говорит о том, что наибольшее влияние на себестоимость зерна с учётом вариации способен оказать первый фактор, т.к. ему соответствует наибольшая абсолютная величина коэффициента.

; .

Заключение.

Объектом исследования послужили предприятия Зуевского и Куменского районов Кировской области.

В среднем по совокупности предприятия Зуевского и Куменского районов получают прибыль, которая составляет 10619 тыс. руб.

Анализ данной совокупности показал, что расхождение эмпирического распределения предприятий по урожайности от классического нормального распределения несущественно.

При совокупности, равной 22 единицам, фактический размер предельной ошибки составит 14,1%.

Анализ первой группировки, целью которой было определение влияния интенсивности производства (затрат на 1 га посева) на уровень урожайности, показал, что с дальнейшее увеличение затрат на 1га посева сопровождается увеличением урожайности.

Анализ второй группировки, целью которой было определение влияния уровня интенсивности производства (урожайность с 1 га) на уровень себестоимости 1 ц зерна, показал что с последовательным увеличением урожайности с 1 га наблюдается сначала последовательное снижение себестоимости 1 ц зерна, а затем незначительное увеличение себестоимости .

Корреляционно-регрессионный анализ группировки показал, что связь между себестоимостью (У) и урожайностью зерновых (х1 ) обратная слабая, между себестоимостью и затратами на 1 га посева зерновых (х2 ) связь прямая слабая. Между урожайностью зерновых х1 и затратами на 1 га посева зерновых х2 связь прямая тесная.

Список литературы.

1. Гусаров В.М. Статистика: Учеб. Пособие для вузов.-М.: ЮНИТА-ДАНА, 2001.-463с.

2. 2.Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник/Под ред. чл.-корр. РАН И.И. Елисеевой.-4-е изд.,перераб. и доп.-М.: Финансы и статистика, 2000.-480с.

3. Зинченко А.П. Сельскохозяйственная статистика с основами экономической статистики. М.: Издательство «ЛИХА», 1998.-430с.

4. Практикум по статистике/А.П. Зинченко, А.Е. Шибалкин, О.Б. Тарасова, Е.В. Шайкина/Под ред. А.П.Зинченко,-М.:Колос,2001.-392с.

5. Салин В.Н., Шпаковская Е.П. Социально-экономическая статистика: Учебник.-М.:Юрист,2001.-461 с.

6. Статистика. Учебник/Под ред. проф. И.И.Елисеевой – М.: ООО «ВИТРЭМ»,2002.-448 с.

7. Статистика: Учебное пособие/ Л.П.Харченко, В.Г.Долженкова, В.Г.Ионин и др. Под ред. к.э.н. В.Г.Ионина.-Изд. 2-е, перераб. и доп. – М.: ИНФРА-М, 2001.-384с.

8. Коваленко Н.Я. Экономика сельского хозяйства с основами аграрных рынков. – М.: Ассоциация авторов и издателей. ТАНДЕМ: Издательство ЭКМОС,1998.-389-391с.

Приложения

Приложение 1

Данные к таблице 7

№ хозяйства Затраты на 1га посева, руб. Себестоимость 1ц, руб. Урожайность, ц/га
X X2 X X2 X X2
1 8330 69388900 329 108241 28,6 817,96
2 7959 63345681 328 107584 22,1 488,41
3 2244 5035536 352 123904 6,3 39,69
4 4129 17048641 355 126025 11,6 134,56
5 3425 11730625 222 49284 15,1 228,01
6 4573 20912329 239 57121 18,8 353,44
7 3451 11909401 277 76729 12,4 153,76
8 1672 2795584 214 45796 7,7 59,29
9 2811 7901721 205 42025 13,7 187,69
10 5290 27984100 262 68644 20,1 404,01
11 5762 33200644 265 70225 20,8 432,64
12 2489 6195121 276 76176 9,0 81,00
13 4602 21178404 347 120409 13,2 174,24
14 2962 8773444 218 47524 13,6 184,96
15 11108 1,23E+08 357 127449 30,4 924,16
16 2146 4605316 438 191844 4,9 24,01
17 6365 40513225 229 52441 27,5 756,25
18 3081 9492561 477 227529 6,4 40,96
19 3181 10118761 340 115600 9,3 86,49
20 3758 14122564 221 48841 16,8 282,24
21 5217 27217089 279 77841 18,7 349,69
ИТОГО 94555 536857311 6230 1961232 327 6203,46

Затраты на 1 га посева:

Себестоимость 1 ц

Продолжение приложения 1

Урожайность

Приложение 2

Корреляционно – регрессионный анализ (расчетные данные к системе)

№ п\п Себестоимость 1 ц зерна, руб., Y Урожайность, ц/га, x1 Затраты на 1 га посева, руб., x2 Y*x1 x1*x1 x1*x2 Y*x2 x2*x2
1 329 28,6 8330 9409,4 817,96 238238 2740570 69388900
2 328 22,1 7959 7248,8 488,41 175894 2610552 63345681
3 352 6,3 2244 2217,6 39,69 14137,2 789888 5035536
4 355 11,6 4129 4118 134,56 47896,4 1465795 17048641
5 222 15,1 3425 3352,2 228,01 51717,5 760350 11730625
6 239 18,8 4573 4493,2 353,44 85972,4 1092947 20912329
7 277 12,4 3451 3434,8 153,76 42792,4 955927 11909401
8 214 7,7 1672 1647,8 59,29 12874,4 357808 2795584
9 205 13,7 2811 2808,5 187,69 38510,7 576255 7901721
10 262 20,1 5290 5266,2 404,01 106329 1385980 27984100
11 265 20,8 5762 5512 432,64 119850 1526930 33200644
12 276 9,0 2489 2484 81 22401 686964 6195121
13 347 13,2 4602 4580,4 174,24 60746,4 1596894 21178404
14 218 13,6 2962 2964,8 184,96 40283,2 645716 8773444
15 357 30,4 11108 10852,8 924,16 337683 3965556 123387664
16 438 4,9 2146 2146,2 24,01 10515,4 939948 4605316
17 229 27,5 6365 6297,5 756,25 175038 1457585 40513225
18 477 6,4 3081 3052,8 40,96 19718,4 1469637 9492561
19 340 9,3 3181 3162 86,49 29583,3 1081540 10118761
20 221 16,8 3758 3712,8 282,24 63134,4 830518 14122564
21 279 18,7 5217 5217,3 349,69 97557,9 1455543 27217089
6230 327 94555 93979,1 6203,46 1790873 28392903 536857311

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита04:15:00 04 ноября 2021
.
.04:14:58 04 ноября 2021
.
.04:14:57 04 ноября 2021
.
.04:14:56 04 ноября 2021
.
.04:14:54 04 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Реферат: Экономико-статистический анализ эффективности производства зерна Зуевского и Оричевского районов

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294345)
Комментарии (4230)
Copyright © 2005-2023 HEKIMA.RU [email protected] реклама на сайте