Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Доклад: Алгоритм решения Диофантовых уравнений 3

Название: Алгоритм решения Диофантовых уравнений 3
Раздел: Рефераты по математике
Тип: доклад Добавлен 15:07:19 18 февраля 2010 Похожие работы
Просмотров: 3 Комментариев: 21 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Данная статья является продолжением работы

«Алгоритм решения Диофантовых уравнений».

Нижегородская область

Г. Заволжье

Белотелов В.Д.

2009 год


Подход к решению уравнений

(1)

(2)

Сейчас данные уравнения, насколько мне известно, решены для n =4.

Т.е. доказано наличие для каждого из уравнений бесконечного количества сочетаний натуральных чисел a , b , c , d удовлетворяющим условиям равенств уравнений (1), (2) .

Причём доказательства основаны на компьютерном поиске данных чисел. Нашли компьютерным расчётом для n =4, отлично - теперь сделайте тоже самое для n =5 и т.д., т.к. даже для n =1000 в целом проблема не будет закрыта.

Мне кажется, что есть общий подход к доказательству утверждения о существовании равенств в уравнениях (1), (2) при любых n ® ¥ .

Я сомневаюсь, что мои рассуждения сойдут за доказательства, но направление, может быть, окажется верным.

I .

Существует наличие сочетаний a , b , c , d на чётность и нечётность.

Разберу одну возможность, - пусть все числа a , b , c , d будут чётными.

А далее буду использовать алгоритм решения Диофантовых уравнений.

Составлю систему уравнений. Бумагу экономить не буду, - распишу подробно.


………………………………………………………………. (3)

В этих уравнениях пусть 1 > 3 > 4 > 2 – очевидное предположение.

Произведу в уравнениях системы сокращения на 2 n и члены с 2 перенесу в правую часть уравнений, а члены с 3 – в левую.

Сокращением же на 2 n от чётных значений a , b , c , d уравнения системы переведены в значения всего натурального ряда.


…………………………………………………….

Далее используются формулы разности степеней.


+…..+=+…..+

+…..+=+….+

+...+=+…+

………………………………………………………………. (4)

+...+=+..+

+…..+=+…..+

Т.к. ,, система (4) примет вид:

p+…..+=f+…..+

p+…..+= f+…..+

p+…..+= f +…..+ ………………………………………………….

p+…..+= f+…..+

p+..+=f+…+

Т.е. у каждого уравнения начальной системы уравнений (3) произведено понижение формы.

Ну и конечно же доказательство надо вести не от n к n -1 , а наоборот, - от n =2 поэтапно к n ® ¥ .

Уравнение (2) доказывается аналогичным образом.

и т.д.

Мне в вышеизложенное и самому не на все 100% верится.

Поэтому я взываю к коллективному разуму.

Главное сомнение же вот в чём:

В таком разе все уравнения с нечётным числом членов решений в натуральных числах не будут иметь, ну или не так строго, могут не иметь.

Т.к. нет понижения формы у одного из членов уравнения.

Как, например, у уравнения (2) бесконечное число сочетаний натуральных чисел a , b , c , d существует, тогда, как у уравнения

таких сочетаний может и не быть.

И без компьютерного расчёта, хотя бы для n =3 , не обойтись, и если взять мои утверждения, и очень убедительные контрдоводы кого-либо другого.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита04:59:13 04 ноября 2021
.
.04:59:11 04 ноября 2021
.
.04:59:10 04 ноября 2021
.
.04:59:08 04 ноября 2021
.
.04:59:07 04 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Доклад: Алгоритм решения Диофантовых уравнений 3

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287853)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте