Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Лабораторная работа: Разложение в ряды Тейлора

Название: Разложение в ряды Тейлора
Раздел: Рефераты по информатике
Тип: лабораторная работа Добавлен 23:23:03 14 мая 2011 Похожие работы
Просмотров: 368 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Министерство образования Российской Федерации

Нижегородский государственный университет

Имени Н.И. Лобачевского

Факультет ВМК

Разложение в ряды Тейлора

отчёт по дисциплине:

Информатика и программирование

Выполнила:

Студентка Репина Инна Сергеевна, (в/о)

Проверила:

Нижний Новгород

2006

Содержание

1. Введение……………………………………………………….. стр. 3

2. Постановка задачи................................................................ стр. 5

3. Руководство пользователя................................................... стр. 6

4. Руководство программиста.................................................. стр. 7

5. Заключение............................................................................ стр. 8

6. Список литературы .............................................................. стр. 10

7. Приложение.......................................................................... стр. 11


Введение

Ряд Тейлора – степенной ряд вида:

, (1)

где f (x ) - функция, имеющая при х = а производные всех порядков. Во многих практически важных случаях этот ряд сходится к f (x ) на некотором интервале с центром в точке а:

(2)

(эта формула опубликована в 1715 Б. Тейлором). Разность Rn (x ) = f (x ) - Sn (x ), где Sn (x ) - сумма первых n + 1 членов ряда (1), называется остаточным членом Т. р. Формула (2) справедлива, если . Т. р. можно представить в виде

,

применимом и к функциям многих переменных.

При а = 0 разложение функции в Т. р. принимает вид:

,

в частности:

(3)

(4)

(5)

(6)

.(7)

Ряд (3), являющийся обобщением на случай дробных и отрицательных показателей формулы бинома Ньютона, сходится: при -1< х < 1, если m < -1; при -1< x £ 1, если -1< m < 0; при -1 £ x £ 1, если m > 0. Ряды (4), (5) и (6) сходятся при любых значениях х, ряд (7) сходится при -1< x £ 1.

Функция f (z ) комплексного переменного z, регулярная в точке а, раскладывается в Т. р. по степеням z - а внутри круга с центром в точке я и с радиусом, равным расстоянию от а до ближайшей особой точки функции f (z ). Вне этого круга Т. р. расходится, поведение же его на границе круга сходимости может быть весьма сложным. Радиус круга сходимости выражается через коэффициенты Т. р.

Т. р. является мощным аппаратом для исследования функций и для приближённых вычислений. Пэтому данная работа посвящена именно ему.


Постановка задачи

Задача заключается в том, чтобы посчитать через ряд Тейлора функцию и сравнить её значение с значением стандартной функции в паскале.

Предлагается рассмотреть три функции: sin, cos и exp.

Для каждой из них существует разложение в ряд Тейлора.

Разложения:

1.

2.

3.

Бесконечно малыми пренебрежем.

Руководство пользователя

1. Запускаем программу.

На экране появляется главное меню:

1 – sin x

2 – cos x

3 – exp x

4 – Выход

2. Выбираем функцию: синус, косинус или экспонент.

3. Вводим аргумент.

4. Вводим количество слагаемых.

5. Получаем результат и точность в вычислении.

Примечание

Под точностью понимается количество членов ряда.


Главное меню

Руководство программиста

В программе используются переменные процедурного типа.

Точнее, мы присваиваем переменной процедуру, проверяем корректность заданного параметра и потом с помощью переменной процедурного типа вычисляем пошагово в цикле очередной член ряда и прибавляем его к сумме.

В программе функциям передаются следующие параметры: аргумент, точность вычислений (число членов ряда) и переменная процедурного типа, указывающая на функцию, которая возвращает новый член ряда. Функции вычисляют новый член ряда на основе аргумента и номера члена. В функции не передаётся предыдущий член ряда, поскольку результат выполнения этих функций домножается на предыдущий член ряда.

Заключение

При большом количестве членов ряда (начиная с 10-14 для разных рядов) погрешность в вычислениях становится настолько мала, что иногда округляется до нуля. При стремлении числа слагаемых в бесконечность погрешность стремится к нулю. В результате мы получаем корректный результат при большем количестве членов ряда.

В результате данной работы была написана программа и были проведены эксперементы, результатами которых явилось:

1.
Sin x

2. Cos x


3. Exp X



Список литературы

1. Л.Д. Кудрявцев «Курс математического анализа»

2. В.Г. Абрамов, Н.П. Трифонов, Г.Н. Трифонова «Введение в язык Паскаль».

Приложение

program teylor;

uses

SysUtils;

var a,x,sum: real;

n,i,answ: integer;

begin

writeln ('Viberite funkciyu');

writeln ('1-sinx');

writeln ('2-cosx');

writeln ('3-expx');

writeln ('4-Vihod');

readln (answ);

writeln ('Vvedite argument i kolichestvo slagaemih');

readln (x,n);

case answ of

1: begin

a:=x;

sum:=a;

for i:=1 to n do

begin

a:=a*(-1)*x*x/(2*i*(2*i+1));

sum:=sum+a;

writeln (i, sum);

end;

writeln ('Pogreshnost', abs(sin(x)-sum));

end;

2: begin

a:=1;

sum:=1;

for i:=1 to n do

begin

a:=a*(-1)*x*x/((2*i)*(2*i-1));

sum:=sum+a;

writeln (i, sum);

end;

writeln ('Pogreshnost', abs(cos(x)-sum));

end;

3: begin

a:=1;

sum:=1;

for i:=1 to n do

begin

a:=a*x/i;

sum:=sum+a;

writeln (i, sum);

end;

writeln ('Pogreshnost', abs(exp(x)-sum));

end;

end{case};

readln;

end.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита06:03:24 04 ноября 2021
.
.06:03:18 04 ноября 2021
.
.06:03:16 04 ноября 2021
.
.06:03:13 04 ноября 2021
.
.06:03:10 04 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Лабораторная работа: Разложение в ряды Тейлора

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294365)
Комментарии (4230)
Copyright © 2005-2023 HEKIMA.RU [email protected] реклама на сайте