Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Расчет ЧМ РПУ на ИМС

Название: Расчет ЧМ РПУ на ИМС
Раздел: Рефераты по коммуникации и связи
Тип: реферат Добавлен 17:22:50 16 марта 2011 Похожие работы
Просмотров: 41 Комментариев: 26 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

СОДЕРЖАНИЕ ЛИСТ

Введение …………….………..……………………………………….………… 5

1. Выбор блок-схемы приемника ………………………………….…..………. 10

2. Предварительный расчет усиления ЧМ на ИМС приемника ……………... 11

3. Расчет резонансной системы для обеспечения избирательности ………… 12

4. Выбор ИМС, используемой в качестве УВЧ, преобразователя, УПЧ, ЧД,

а так же предварительного УЗЧ ……………………………………..…....... 14

5. Выбор ИМС, используемой в качестве оконечного УЗЧ. …….……........... 17

Описание принципиальной схемы …………………………………………….. 20

Список используемой литературы …………..…….....………………………... 21

Введение.

C развитием радиоприемной техники повышались тре­бования к чувствительности радиоприемника, к его полосе пропускания и избирательности. Однако эти требования ограничиваются различными видами помех радиоприему, так как с увеличением коэффициента усиления приемника и расширением полосы пропускания восприимчивость при­емника к помехам возрастает, а следовательно, его реальная чувствительность понижается.

Как показывают теоретические и экспериментальные исследования, применение частотной модуляции для пере­дачи сигналов в значительной мере ослабляет действие по­мех на радиоприемник и повышает его реальную чувстви­тельность. В этом случае удается улучшить отношение сигнал/шум на выходе приемника более чем в 100 раз по сравнению с амплитудной модуляцией. Высокая помехо­устойчивость является одним из основных качеств частотной модуляции.

Остановимся коротко на общих сведениях о частотно-модулированных колебаниях. Частотно-модулированными (ЧМ) колебаниями называются колебания, амплитуда кото­рых постоянна, а частота изменяется по закону, отображаю­щему характер модулирующих низкочастотных сигналов.

Максимальное значение девиации частоты Δfmax соот­ветствующее наибольшей амплитуде модулирующего сиг­нала, в радиовещании принято равным 75 кГц. Это значит, что полезный спектр, излучаемый радиостанцией, занимает полосу 150 кГц. Практически для одной станции отводится канал с шириной полосы 250 кГц. Использование ЧМ коле­баний при такой ширине канала возможно только в диа­пазоне укв.

Высокая помехоустойчивость приемников ЧМ колебаний объясняется главным образом тем, что амплитуда колебаний при частотной модуляции сохраняется постоянной.

Сравним соотношение между сигналом и помехой на входе приемника при частотной модуляции и при амплитудной модуляции. Положим, что амплитуда частотно-модулирован­ного сигнала равна амплитуде амплитудно-модулированного (АМ) сигнала в момент ее наибольшего значения (фиг. слева) Интенсивность воздействия помехи на входе приемника в обоих случаях считаем одинаковой. Как видно из рисунка а), соотношения между сигналом и помехой при АМ колебаниях беспрерывно изменяются. При больших амплитудах сигнал значительно превышает помеху и ее влияние на прием не­значительно, и, наоборот, при малых амплитудах, сигнал может быть на уровне помехи, и в этом случае помеха будет препятствовать нормальному приему. Следовательно, для обеспечения достаточной помехоустойчивости приемника при АМ колебаниях необходимо, чтобы минимальная ам­плитуда полезного сигнала превышала уровень помехи в достаточное число раз. Совершенно иное положение на­блюдается при приеме ЧМ колебаний. Из рисунка б) видно, что соотношение между сигналом и помехой остается неизменным и по величине сохраняется таким же как в случае амплитудной модуляции в момент ее наибольшей

амплитуды.

Все эти соображения не раскрывают полностью причин повышенной помехоустойчивости приемника ЧМ колебаний. В этом приемнике для получения максимального соотношения между сигналом и помехой на выходе применяют специальное устройство для подавления помех и собственных внутриприемных шумов.

Действие помех и шумов на полезный сигнал вызывает в основном амплитудные изменения сигнала по закону помех, т. е. происходит амплитудная модуляция сигнала. Поэтому подавление помех в радиоприемнике достигается путем ограничения сигнала по амплитуде. Применение ограничения при АМ колебаниях наряду с частичным устра­нением амплитудных изменений сигнала, вызванных по­мехами, нарушает закон модуляции и в конечном счете при­водит к нелинейным искажениям сигнала по низкой часто­те. При ЧМ колебаниях действие амплитудного ограничителя устраняет всякие амплитудные изменения сигнала без нарушения закона модуляции. Таким образом, амплитудное ограничение является эффективным методом подавления помех при ЧМ колебаниях, вследствие чего помехоустой­чивость приемника еще больше увеличивается.

Приемник ЧМ колебаний характеризуется особенно­стями, обусловленными отличием ЧМ колебаний от АМ колебаний:

1) приемник ЧМ колебаний работает в диапазоне УКВ;

2) полоса пропускания высокочастотного канала при­емника (до детектора) имеет большую ширину.

Супергетеродинный прием­ник состоит из: преселектора, включающего в себя входную цепь и усилителя радиочастоты (УРЧ). Входная цепь должна обеспечить некоторую частотную избирательность до входа первого каскада УРЧ с целью ослабления сильных помех. УРЧ должен обеспечить частотную избирательность и усиление принятого сигнала, мощность которого на входе приемника на много порядков меньше той, кото­рая необходима для нормальной работы воспроизводящего устрой­ства приемника.

Преобразователь частоты , состоит из смесителя и гетеродина (СМ и ГЕТ).

Гетеродин — это маломощный автогенератор. Смеситель - это резонансный каскад. На вход смесителя подается напря­жение с частотами сигнала fc и гетеродина fг - В результате взаимо­действия двух напряжений разных частот в спектре выходного тока смесителя появляется много комбинационных частот, в том числе и частота, равная разности этих частот. Величина разностной частоты должна быть ниже или выше частоты радио­сигнала, но обязательно выше частоты модуляции, поэтому ее назы­вают промежуточной - fпр . Промежуточная частота может быть равной:

fпр =fг – fс, при fг > fс

fпр = fс - fг, при fс > fг

Отличительной особенностью супергетеродинного приемника явля­ется то, что независимо от частоты принимаемого сигнала промежу­точная частота постоянна и выбирается так, чтобы обеспечить наи­меньшие помехи от близко расположенных по частоте станций и получить требуемое усиление и избирательность по соседнему каналу Sск .

На промежуточную частоту настроена резонансная система, вклю­ченная в выходную цепь смесителя, что позволяет при соответствую­щей полосе пропускания выделить напряжение сигнала промежуточ­ной частоты. Следовательно, назначение преобразователя заклю­чается в преобразовании частоты радиосигнала в другую, промежу­точную частоту с сохранением закона модуляции.

Усилитель, который усиливает сигнал промежуточной частоты, называется усилителем промежуточной частоты (УПЧ). Усилитель промежуточной частоты приемника ЧМ коле­баний в отличие от приемника АМ колебаний должен обес­печивать усиление сигналов в сравнительно широкой полосе пропускания в пределах 150—200 кГц и поэтому в нем должно быть большее число каскадов, чем в обычном узко­полосном усилителе промежуточной частоты.

Обычно в приемниках ЧМ колебаний усилитель проме­жуточной частоты содержит не менее трех каскадов усиле­ния. Величина промежуточной частоты в таких приемни­ках выбирается в пределах единиц и десятков мегагерц. Для получения высококачественного звучания полосу про­пускания низкочастотного тракта обычно расширяют до 15 кГц.

Таким образом, в супергетеродинном приемнике усиление осу­ществляется на трех частотах: на радиочастоте, промежуточной частоте и частоте модуляции, а на которых это происходит, называются трактами радиочастоты промежуточной частоты, низкой частоты.

Частотный детектор. В частотном детекторе сигнал, модулиро­ванный по частоте, преобразуется в сигнал, модулирован­ный по амплитуде, который затем детектируется при помощи обычного амплитудного детектора. В современных приемниках ЧМ сигналов для частотного детектирования широко применяется так называемый дроб­ный детектор. Основное преимущество дробного детектора заключается в том, что он не реагирует на амплитудные из­менения сигнала, а это позволяет исключить из схемы при­емника

Рисунок 1 – Характеристика ЧД. амплитудный ограничитель.

Действия частотного детектора дополнительно поясняются характеристикой, приведенной на рисунке 1.

Усилитель звуковой частоты (УЗЧ) доводит звуковой сигнал до уровня необходимого для воспроизведения.

Краткие выводы:

1. Основным достоинством приемников частотно-моду­лированных колебаний является их высокая помехоустой­чивость.

2. Приемники ЧМ колебаний предназначены для прие­ма сигналов в диапазоне ультракоротких волн и характери­зуются широкой полосой пропускания высокочастотного канала.

3. Приемники частотно-модулированных колебаний в основном строятся по супергетеродинной схеме, в составе которой в отличие от схем приемников амплитудно-модулированных колебаний имеются амплитудный ограничитель (когда требуется) и частотный детектор.

4. Главное преимущество супергетеродинного приемника заключается в том, что он позволяет обеспечить устойчивый прием слабых сигналов в условиях интенсивных помех.

5. Более высокая чувствительность (Uвх min =0,1-450мкВ) и большая выходная мощность супергетеродинного приемника отличает его от других приемников.

Несмотря на указанное преимущество, супер­гетеродинные приемники имеют некоторые недостатки:

1. В первую очередь главным недостатком этой схемы является большая сложность и трудность обеспечения постоянной промежуточной частоты fпр .

2. Наличие паразитного дополнительного канала при­ема, называемого зеркальным или каналом симметричной станции. Частота зеркаль­ного канала fзк отличается от частоты принимаемого сигнала fc на удвоенное значение промежуточной частоты. Таким образом, супергетеродинный приемник будет одновременно принимать радио­станции, работающие на частотах fc и fзк симметрично расположен­ных относительно частоты гетеродина fг .

Рисунок 2 – Ось частот, используемая в работе супергетеродинного ЧМ приемника.

1. Выбор блок-схемы приемника.

В принципе возможны два различных подхода к проектированию УКВ-ЧМ приемника. Один использует однократное, другой – двойное преобразование частоты. При относительно высокой промежуточной частоте большинство транзисторов обладают небольшим устойчивым усилением да и крутые скаты резонансной кривой получить затруднительно. Это является недостатком однократного преобразования. Двукратное преобразование с низкой второй промежуточной частотой исключает эту трудность. Дополнительным преимуществом двукратного преобразования является то обстоятельство, что общее усиление приемника распределяется по нескольким частотам. При этом заметно уменьшается опасность самовозбуждения приемника через различные паразитные связи. Для тесного монтажа в малогабаритных приемниках указанное преимущество особенно важно.

Однако во всеволновых вещательных приемниках, содержащих также тракт АМ, применение двукратного преобразования является обычно неоправданным из-за сложности тракта ЧМ, так как невозможно использовать комбинированные каскады АМ-ЧМ. Поэтому двукратное преобразование частоты можно рекомендовать, если требуется получить показатели приемника выше, чем для первого класса, т.е.> 36 дБ, крутизна ската > 0,25 дБ/кГц.

По заданию к данному расчету, эти параметры равны:

= 23 дБ

= 0,24 дБ/кГц

Следовательно, для упрощения схемы приемника, выбирается схема с однократным преобразованием частоты.

Рисунок 3 – Упрощенная блок-схема ЧМ приемника с однократным преобразованием

частоты.

2. Предварительный расчет усиления ЧМ на ИМС приемника.

Требуемый коэффициент усиления напряжения от входа приемника до входа частотного детектора определяется по формуле [1]:

К`общ = Kзап * Uвхчд / Uвхmin (1),

где Kзап – коэффициент запаса, Kзап

Uвхчд – входное напряжение ЧД, В

Uвхmin – чувствительность РПУ, мкВ

В качестве частотного детектора выбирается дробный детектор, согласно условию, что Uвхчд В.

Расчет формулы (1):

К`общ. = Kзап * Uвхчд / Uвхmin = =

Согласно найденному К`общ и заданному частотному диапазону в дальнейшем будет выбираться необходимый набор ИМС, обеспечивающий все функции РПУ, исключая избирательность.

3. Для обеспечения избирательности рассчитывается резонансная система, которая должна включаться до смесителя.

3.1 Определение ширины полосы пропускания ЧМ РПУ на ИМС.

3.1.1 Определение индекса модуляции по формуле:

(2),

где - девиация частоты, кГц

- верхняя (максимальная) частота модуляции, кГц

Расчет формулы (2):

= 10,7

3.1.2 Исходя из условия , ширина полосы пропускания определяется по формуле:

(3),

Расчет формулы (3):

кГц

Обычно входной контур преселектора выполняют широкополосным с настройкой на fср, определяемую по формуле:

fср (4),

где fср – средняя частота рабочего диапазона приемника, МГц

f min – минимальная частота рабочего диапазона приемника, МГц

f max – максимальная частота рабочего диапазона приемника, МГц

Расчет формулы (4):

fср МГц

3.2 Входная цепь, как правило, имеет фиксированную настройку на среднюю

частоту fср рабочего диапазона, а полоса пропускания входной цепи равна ширине диапазона f fmin – fmax. Затухание входной цепи d вх. ц. определяется по формуле:

d вх.ц. (5),

Расчет формулы (5):

d вх.ц. 0,032

что соответствует затуханию на краях полосы в 3 дБ.

3.3 Избирательность по зеркальному каналу, которую обеспечивает одиночный контур (ОК), рассчитывается по формуле:

(6),

где - эквивалентное затухание одиночного контура = d вх. ц.

fпр – промежуточная частота, МГц

Расчет формулы (6):

дБ

3.4 Избирательность, обеспечиваемая ОК не достаточна, т.е. < . Следовательно, рассчитывается недостающая избирательность по формуле:

(7),

где - заданная избирательность по зеркальному каналу, дБ

- избирательность, обеспечиваемая одиночным контуром, дБ

Расчет формулы (7):

дБ

возможно обеспечить либо резонансной нагрузкой УРЧ, либо в качестве входной цепи выбирают ДПФ.

3.5 Затухание контура в нагрузке УРЧ определяется по формуле:

(8),

предварительно переведем в разы по формуле:

(9),

Расчет формулы (9):

0,875

Расчет формулы (8):

полученное затухание реально, т.к по условию оно реально, если > 0,01. Следовательно,

обеспечивается резонансной нагрузкой УРЧ.

Далее, решается вопрос о выборе схем последующих каскадов и выбираются соответствующие ИМС.

4. Выбор ИМС, используемой в качестве УВЧ, преобразователя, УПЧ, ЧД а так же предварительного УЗЧ.

В виду того, что в требуемом к расчету диапазоне рабочих частот, очень затруднительно согласовывать отдельные каскады на ИМС, из-за устаревшей элементной базы, в качестве УВЧ, преобразователя, УПЧ, ЧД а так же предварительного УЗЧ, применяется ИМС К174ХА34 (аналог TDA7021) [3].

ИМС К174ХА34 включает в себя так же фильтр промежуточной частоты (см. структурную схему на рисунке 4). Так же необходимо заметить, что недостающие 1,5 дБ, составляющие (которые не обеспечиваются входной цепью и должны обеспечиваться, по расчету, одиночным контуром), обеспечиваются внутри ИМС.

К174ХА34 имеет следующие характеристики:

Электрические параметры:

Номинальное напряжение питания, , В ……………………………………...…....... 3

Ток потребляемый, , мА, при = 3 не более …………………………………6,3

Выходное напряжение НЧ, мВ, при = 2,7, = 69 МГц не менее …………..… 80

Коэффициент ослабления амплитудной модуляции, , дБ не менее ……………...…… 30

Коэффициент гармоник, , % не более ………………………………………………….... 2,5

Отношение сигнал/шум, , дБ не менее …………………………………………………... 40

Предельно допустимые данные:

, В, минимальное ……………………………………………………………...………... 1,8

максимальное …………………………………………………………………………. 6

Напряжение входное, , минимальное ……………...……….. ……………………. 10 мкВ

максимальное ………………………………………………... 1 мВ

Диапазон частот входного сигнала, МГц, …………..……………………………...… 1,5

…….…………………………………….. 110

Назначение выводов:

1, 2 – фильтр нижних частот

3 - общий

4 – питание (UCC )

5 – контур гетеродина

6, 13, 16 – блокировка

7, 8, 10, 11 – фильтр промежуточной частоты

9 – уровень напряжения поля

12 – вход высокой частоты

14 – выход звуковой частоты

15 – вход обратной связи

Структурная схема ИМС К174ХА34 приведена на рисунке 4, страница 15. Схема включения ИМС К174ХА34 приведена на рисунке 5, страница 16.

Данная схема имеет полный набор функций ЧМ РПУ, однако не обеспечивает заданной для расчета выходной мощности. Поэтому необходимо выбрать ИМС в качестве УЗЧ, которая бы удовлетворяла заданным параметрам.

Рисунок 4 – Структурная схема ИМС К174ХА34.

5. Выбор ИМС, используемой в качестве оконечного УЗЧ.

5.1 Предварительный расчет УЗЧ. Определение коэффициента усиления УЗЧ по формуле:

(10),

где - выходное напряжение УЗЧ, В.

- выходное напряжение предыдущего каскада, В.

Выходное напряжение УЗЧ производится по формуле:

(11),

где - сопротивление нагрузки, Ом.

- выходная мощность УЗЧ, Вт.

Расчет формулы (11):

В

Расчет формулы (12):

5.2 Выбор ИМС в качестве оконечного УЗЧ.

ИМС в качестве оконечного УЗЧ выбирается исходя из требуемой выходной мощности, величины сопротивления нагрузки, а следовательно и коэффициента усиления. Для данной схемы ЧМ РПУ целесообразно использовать ИМС К174УН4А [2].

К174УН4А имеет следующие характеристики:

Электрические параметры:

Номинальное напряжение питания, , В ……………………………………..…........ 9

Ток потребляемый, , мА, при = 9 В не более …...……………………..…… 10

Коэффициент усиления по напряжению, , при = 100 мВ, = 9 В …. ……………………………………………………………………………………………….. 4…40

Выходная мощность,, Вт, при = 9 В, = 4 Ом, 2 % не менее ...…... 1

Коэффициент гармоник, , %, при = 9 В, = 4 Ом ……………..………......... 2

Входное сопротивление, , кОм, при = 9 В ………………………………….... 10

Предельные допустимые данные:

, В, минимальное ……………………………………………………………………... 4,5

максимальное …………………………………………………………………….... 9

Максимальное амплитудное значение тока нагрузки , мА …………………………..860

Минимальное сопротивление нагрузки , Ом ……………………..………………….. 3,2

Максимальная рассеиваемая мощность, Вт …………………………………… 1*, 2**

Температура окружающей среды, C ……………………………………………… -25 … +55

Температура кристалла, C, не более ……………………………………………………. +125

Назначение выводов:

1 – управление стабилизатором тока

2 – обратная связь

3 – теплоотвод

4 – вход

5 – фильтр

6 – вольтдобавка

7 – питание (+)

8 – выход

9 – общий, питание (-)

Принципиальная схема К174УН4А приведена на рисунке 6. Схема включения ИМС К174УН4А приведена на рисунке 7, страница 19.

Рисунок 6 – Принципиальная схема К174УН4А.

Описание принципиальной схемы.

Супергетеродинный ЧМ РПУ на ИМС состоит из входной цепи и двух микросхем DA1 и DA2, обеспечивающих все функции ЧМ приемника.

Входная цепь состоит из одиночного колебательного контура, который связан с внешней антенной емкостной связью. Использование емкостной связи обусловлено лучшей избирательностью по соседнему каналу. Одиночный контур подключен частично к выводу 5 микросхемы DA1 (вход высокой частоты), частичное включение контура увеличивает эквивалентную добротность и тем самым уменьшает полосу пропускания. Входная цепь связана с DA1 через разделительную ёмкость С9.

УВЧ, смеситель, УПЧ, ЧД и предварительный УЗЧ входят в ИМС DA1 – К174ХА34. Принцип работы микросхемы приведен на рисунке 3.

Контур гетеродина подключен к выводам 4 и 5 DA1. Контур настраивается с помощью переменного конденсатора С6.

Нагрузкой предварительного каскада УЗЧ (вывод 14) является переменный резистор, с которого подается НЧ сигнал на вход оконечного каскада УЗЧ через разделительную емкость C13. Связь между каскадами – непосредственная.

В качестве оконечного каскада УЗЧ применяется ИМС DA2 – К174УН4А.

Нагрузкой DA2 является громкоговоритель, подключенный к выводу 8. Выводы 3 заземляются и используются в качестве теплоотвода. Регулировка коэффициента усиления напряжения на низких частотах может быть проведена изменением емкостей конденсаторов С14 и С17 . Ослабление усиления на верхней граничной частоте 20кГц - не более 3 дб . Допускается регулировка коэффициента усиления напряжения с помощью изменения сопротивления резистора обратной связи R6 (в пределах 240 Ом…2,7 кОм) и емкости конденсатора С14 . Допустимое значение статического потенциала 200 В .

Источник питания состоит из микросхемы DA3 – 78L05, использующейся как стабилизатор напряжения, микросборки диодного моста VD2, и трансформатора TV1.

Список используемой литературы:

  1. Методическое пособие по расчету ЧМ УКВ на ИМС, Т.З. Мещанкина.
  2. Справочник «Микросхемы для бытовой радиоаппаратуры» - И.В. Новаченко, В.М.

Петухов, И.П. Блудов, А.В. Юровский, 1995 г.

  1. Гвоздев С. Микросхема К174ХА34. Справочный листок. - Радио, 1995, № 10, с. 62; №11, с. 45.
Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита06:45:08 04 ноября 2021
.
.06:45:05 04 ноября 2021
.
.06:45:03 04 ноября 2021
.
.06:45:01 04 ноября 2021
.
.06:44:59 04 ноября 2021

Смотреть все комментарии (26)
Работы, похожие на Реферат: Расчет ЧМ РПУ на ИМС

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(290135)
Комментарии (4186)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте