Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Расчёт и анализ нерекурсивного цифрового фильтра

Название: Расчёт и анализ нерекурсивного цифрового фильтра
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа Добавлен 03:48:37 13 мая 2011 Похожие работы
Просмотров: 86 Комментариев: 12 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

1. Краткое математическое описание методов расчёта

1.1. Общие положения

Цифровой фильтр полностью описывается своим разностным уравнением:

(1)

Для нерекурсивного цифрового фильтра и уравнение принимает вид:

(2)

Зная коэффициенты разностного уравнения, можно легко получить выражение для передаточной функции фильтра (для НЦФ):

(3)

Для образа выходного сигнала НЦФ справедливо выражение

, (4)

где – z-преобразования выходного и входного сигналов фильтра.

Зная выражение (4) и учитывая, что z-преобразование функции единичного скачка равно 1, можно получить выражение для z-образа импульсной характеристики :

(5)

Из (5) следует, что отсчеты импульсной характеристики НЦФ численно равны коэффициентам разностного уравнения НЦФ, а сама импульсная характеристика и передаточная функция связаны парой z-преобразований (прямым и обратным).

Заменив в (4) z на , получим комплексную частотную характеристику:

(6)

Импульсная характеристика и комплексная частотная характеристика связаны парой преобразований Фурье:

(7)

(8)

Из комплексной частотной характеристики можно получить выражения для АЧХ и ФЧХ:


(9)

(10)

Во все вышеприведённые формулы входит интервал квантования . Чтобы от него избавиться, частоту обычно нормируют. Это можно сделать с помощью замены:

(11)

Так как интервал определения , то интервал определения . Исходными данными для проектирования фильтра является его АЧХ. Как правило, в зонах неопределённости АЧХ некоторым образом доопределяют с тем, чтобы избежать явления Гиббса («выбросы» характеристики в точках разрыва первого рода – «скачках»). В простейшем случае доопределить АЧХ можно линейным законом. В этом случае АЧХ проектируемого полосового фильтра будет выглядеть таким образом.

Аналитически АЧХ будет записываться в виде:

(12)


При проектировании часто полагают, что ФЧХ фильтра является линейной. В [1] показывается, что в этом случае импульсная характеристика фильтра является либо симметричной (), либо антисимметричной (). Учитывая, что порядок фильтра может быть чётным и нечётным, существует четыре вида ИХ с линейной ФЧХ:

1. N – нечётное, ИХ – симметричная

2. N – чётное, ИХ – симметричная

3. N – нечётное, ИХ – антисимметричная

4. N – чётное, ИХ – антисимметричная

цифровой фильтр выборка частотный

1.2 Метод частотной выборки

Основная идея метода частотной выборки – замену в выражениях (7) и (8) непрерывную частоту дискретизированной. В этом случае выражения (7) и (8) превращаются в пару дискретных преобразований Фурье:

(13)

(14)

Существует 2 метода дискретизации частоты (выражения записаны для нормированной частоты):

(15)

(16)


Выражения (13) и (14) записаны для первого метода дискретизации частоты. По условию задания необходимо использовать второй метод дискретизации частоты, в этом случае выражение (14) приобретает вид:

(17)

Из (17) следует, что для определения импульсной характеристики необходимо знать частотную характеристику. Её можно записать в показательной форме:

(18)

(19)

При чётном N:

(20)

При нечётном N:

(21)


Подставляя вместо , по выражениям (20) и (21) можно найти , а из (17) – .

1.3 М етод наименьших квадратов

При расчете коэффициентов импульсной характеристики используется формула вида:

после чего решается система уравнений:

и находятся коэффициенты Ск.

Далее из найденных Ск можно найти коэффициенты импульсной характеристики:

2. Расчётная часть

2.1 Расчёт методом частотной выборки

2.1.1 Расчёт импульсной характеристики

Расчёт импульсной характеристики для нечётных N осуществлялся по формулам (21) и (17), для чётных – по формулам (20) и (17). Результаты расчёта импульсной характеристики для N=15, 25 и 32 представлены в таблице 1.

Таблица 1. Результаты расчёта импульсной характеристики методом частотной выборки

i Значение импульсной характеристики
N=15 N=25 N=32

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0,081

-0,013

0,025

-0,052

-0,303

0,03

0,46

0,03

-0,303

-0,052

0,025

-0,013

0,081

0,001497

0,001756

-0,02

-0,007456

-0,007554

0,028

0,061

-0,004905

0,034

-0,048

-0,297

-0,035

0,45

0,035

-0,297

-0,048

0,034

-0,004905

0,061

0,028

-0,007454

-0,007456

-0,02

0,001756

0,001497

0,001488

-0,008534

0,008698

-0,000256

0,003711

-0,011

0,015

-0,007875

-0,001266

0,053

0,029

0,0009025

0,04

-0,193

-0,224

0,321

0,321

-0,224

-0,193

0,04

0,0009025

0,029

0,053

0,001266

-0,007875

-0,015

-0,011

-0,003711

-0,000256

0,008698

-0,0008534

0,001488

2.1.2 Расчёт АЧХ и ФЧХ

Расчёт АЧХ и ФЧХ осуществлялся по формулам (9) и (10) для 50 значений частоты , взятой с шагом 0,01 (). На рисунках приведены графики рассчитанной АЧХ фильтра.

Для расчёта точности аппроксимации запишем функцию ошибки аппроксимации:

, (32)

В таблице 2 приведены результаты расчёта точности аппроксимации .


Таблица 2. Результаты расчета точности аппроксимации для метода частотной выборки

График функции точности аппроксимации для N=25

Максимальные ошибки аппроксимации (абсолютная погрешность) для трёх значений N приведены в таблице 3:

Абсолютная погрешность аппроксимации АЧХ, рассчитанной методом частотной выборки

Абсолютная погрешность аппроксимации АЧХ
N=13 N=25 N=32
0,125 0,082 0,049

2.2 Расчёт методом наименьших квадратов

2.2.1 Расчёт импульсной характеристики

Результаты расчёта импульсной характеристики для N=13, 25 и 32 представлены в таблице. Учитывая симметрию импульсной характеристики, приведена только половина отсчётов.

Результаты расчёта импульсной характеристики методом наименьших квадратов

i Значение импульсной характеристики
N=13 N=25 N=32

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0,055

-0,004049

0,035

-0,042

-0,296

0,03

0,45

-0,003929

-0,003499

-0,012

0,008469

-0,008832

-0,026

0,055

0,035

-0,042

-0,296

0,03

0,45

0,002208

-0,005211

0,003349

0,003189

-0,003929

-0,003499

-0,012

-0,008469

-0,008832

0,026

0,055

-0,004049

0,035

-0,042

-0,296

0,45

0,45

2.2.2 Расчёт АЧХ и ФЧХ

Расчёт АЧХ и ФЧХ осуществлялся по формулам (9) и (10) для 50 значений частоты , взятой с шагом 0,01 ().

Заданная по условию и рассчитанная АЧХ фильтра для N=25 (метод наименьших квадратов)

2.2.3 Расчёт точности аппроксимации

Точность аппроксимации оценивалась по формуле (32). В таблице (5) приведены результаты расчёта

Результаты расчета точности аппроксимации для метода наименьших квадратов

В таблице 6 приведена максимальная (абсолютная) погрешность аппроксимации для различных значений N.

Абсолютная погрешность аппроксимации для метода наименьших квадратов

Абсолютная погрешность аппроксимации АЧХ
N=135 N=25 N=32
0,125 0,057 0,051

2.3 Сравнение методов расчёта

Сравнивая результаты расчётов точности аппроксимации, приведённые в таблицах 2 и 6, можно сделать вывод, что метод наименьших квадратов обеспечивает более точную аппроксимацию при N=25 амплитудно-частотной характеристики по сравнению с методом частотной выборки. С увеличением порядка фильтра N точность аппроксимации увеличивается для обоих методов, но точность метода наименьших квадратов начинает уменьшаться по сравнению с методом частотной выборки.


Заключение

В данной курсовой работе был рассмотрен расчёт нерекурсивного цифрового фильтра двумя методами: методом наименьших квадратов и методом частотной выборки. Результаты расчётов точности аппроксимации для каждого метода позволяют сделать следующие выводы:

· Точность аппроксимации увеличивается с увеличением N (порядка фильтра)

· Метод наименьших квадратов обеспечивает более точную аппроксимацию при средних значениях N.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
10:07:32 12 сентября 2021
Ребятки, кто на FAST-REFERAT.RU будет заказывать работу до 26го мая - вводите промокод iphone, и тогда будете учавствовать в розыгрыше iphone xs)) сам только что узнал, что у них такие акции бывают (п.с. кстати не удивляйтесь что вас перекидывает на сайт с другим названием, так и должно быть)
FAST-REFERAT.RU22:42:20 23 мая 2019
Мне с моими работами постоянно помогают на FAST-REFERAT.RU - можете просто зайти узнать стоимость, никто вас ни к чему не обязывает, там впринципе всё могут сделать, вне зависимости от уровня сложности) у меня просто парень электронщик там какой то, тоже там бывает заказывает))
FAST-REFERAT.RU12:04:21 07 декабря 2018
Спасибо, Оксаночка, за совет))) Заказал курсач, отчет по практике, 2 реферата и дипломную на REFERAT.GQ , все сдал на отлично, и нервы не пришлось тратить)
Алексей22:09:32 15 июля 2018Оценка: 5 - Отлично
Я обычно любые готовые работы покупаю на сайте shop-referat.tk , и свои все там же на продажу выставляю, неплохой доп.заработок. А если там не нахожу то уже на referat.gq заказываю и мне быстро делают.
Оксана19:32:40 11 июня 2018Оценка: 5 - Отлично

Смотреть все комментарии (12)
Работы, похожие на Курсовая работа: Расчёт и анализ нерекурсивного цифрового фильтра

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286153)
Комментарии (4150)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте