Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Метод виокреслення лінійно незалежних векторів

Название: Метод виокреслення лінійно незалежних векторів
Раздел: Рефераты по информатике
Тип: реферат Добавлен 06:49:11 04 февраля 2011 Похожие работы
Просмотров: 3 Комментариев: 21 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

1.Нехай V – не порожня підмножина векторів із Rm , коли з умов А є V, В є V випливає, що при L є R, B є R вектор La+ Bb є V.

Візьмемо систему векторів а1 , а2 ..., аn , що належать Rm . Множина всіх лінійних комбінацій цих векторів.

а=Х1 а12 а2 +...Хn an ,Xs є R(1) утворює лінійний підпростір V у Rm .

Справді, якщо а= в=, Хs ,Ys є R

а, в є V, то виконується рівність

La+Bb =, тобто La+Bb є V.

Підпростір V, утворений лінійними комбінаціями виду (1), називається лінійною оболонкою системи векторів а1 , а2 ,...,аn , або підпростором, породженим векторами а1 , а2 ,...,аn .

2.Означення: Упорядкована сукупність m дійсних чисел а1 , а2 ,...аm називається m-вимірним вектором.

Числа а1 , а2 ,...аm називаються кординатами вектора а. Число m називається розмірністю вектора а. Перехід від запису вектора у вигляді стовпця до запису у вигляді рядка на навпаки називається транспортуванням вектора.

Означення: Два вектори називаються рівними, якщо рівні між собою їх відповідні координати.

Означення: Множина всіх m-вимірних векторів називається m-вимірним простором і назначається Rm .

Векторні простори R1, R2 ,R3 можна розглядати відповідно як множину векторів на прямій, множину векторів на площині та множину векторів у тривимірному просторі.

Означення: Вектори а1 , а2 ,...,аn називаються лінійно незалежними, якщо рівність Х1 а12 а2 +...Хn an = О (1)

виконується лише при Х1 = 0, Х2 = 0,..., Хn =0.

Якщо рівність (1) досягається тоді, коли коефіцієнти Х1 , Х2 ,...Хn не перетворюються одночасно на нуль, то вектори а1 , а2 ,...,аn . у одновимірному векторному просторі R, тобто на прямій, будь-який ненульовийвектор є лінійно незалежним, а будь-які два вектори вже лінійно залежні.

3.Означення: Найбільше число r лінійно незалежних вектора у системі векторів а1 , а2 ,...,аn називається її рангом і позначається

r= rank (а1 , а2 ,...,аn ).

Якщо ранг системи n векторів дорівнює R(r<n), то будь-які (r+1) векторів цієї системи лінійно залежні. Число L = n-r називається дефектом системи векторів.

Обчислюючи ранг системи векторів, можна транспортувати вектори, тобто замінювати вектори – стовпці векторами – рядками. У результаті транспортування ранг системи векторів не змінюється.

Щоб обчислити ранг системи векторів, виокреслюємо в ній лінійно незалежні вектори.

З огляду на сказане дістаємо такий метод виокреслення лінійно незалежних векторів.

1.У заданій системі векторів а1 , а2 ,...,аn відшукуємо вектор, в якого перша координата відмінна від нуля. Якщо всі перші координати векторів а1 , а2 ,...,аn дорівнюють нулю, то шукаємо вектор, в якого друга координата відмінна від нуля, і т.д. Нехай це буде вектор а1 .

2.Множимо вектор а1 на Ві (і=2,...,n) і віднімаємо від вектора аі (і=2,...,n) так, щоб вибрана координата перетворилася на нуль.

3.Зі здобутих векторів ві = аі – Ві аі (і= 2,..., n) знову виокремлюємо вектор, лінійно незалежний від інших векторів, способом, зазначеним у nю 1 і 2.

Кількість лінійно незалежних векторів дорівнює рангу системи векторів.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита08:25:44 04 ноября 2021
.
.08:25:42 04 ноября 2021
.
.08:25:39 04 ноября 2021
.
.08:25:37 04 ноября 2021
.
.08:25:34 04 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Реферат: Метод виокреслення лінійно незалежних векторів

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(290843)
Комментарии (4190)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте