Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Великая теорема Ферма два коротких доказательства

Название: Великая теорема Ферма два коротких доказательства
Раздел: Рефераты по математике
Тип: статья Добавлен 00:29:10 23 марта 2010 Похожие работы
Просмотров: 4 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Великая теорема Ферма – два коротких доказательства

Бобров А.В.

123098, г. Москва, ул. Маршала Новикова, д.10, корп. 1, кв. 15

Контактный телефон – 193-42-34

Последняя теорема Ферма, иногда называемая Великой, формулируется следующим образом:

В равенстве числа и не могут быть одновременно целыми положительными, если .

Предположим, такие числа существуют. Тогда должны выполняться следующие условия:

· Равенство справедливо для взаимно простых, не имеющих общих целых множителей, кроме 1, чисел и , т.е. два числа – всегда нечетные.

· Существуют числа и , или , то есть для произвольно выбранных натуральных существует бесконечное множество рациональных, действительных или комплексных чисел и , удовлетворяющих приведенному равенству, если в этом множестве выполнимы арифметические действия. Для целых числа и также будут целыми.

Вариант№1

Равенство (1)

путем последовательного деления на числа и всегда преобразуется в два многочлена (уравнения) -ой степени относительно :

(2)

(3)

Равенства (2) и (3) получены путем тождественных преобразований равенства (1), т.е. должны выполняться при одних и тех же значениях целых положительных чисел и . По определению, необходимым и достаточным условием тождественности двух многочленов над некоторым числовым полем (в нашем случае – над множеством целых чисел) является равенство коэффициентов членов, содержащих одни и те же аргументы в одинаковых степенях, то есть должно выполняться:

, , … , (4)

Из (1) и (4) следует , то есть число , как общий арифметический корень уравнений (1), (2) и (3) не может быть рациональным при целых , , и .

Из равенства свободных членов следует:

,или,или

(5)

Вычитая из правой части равенства (5) левую, получим:

(6)

или, если , сократив на , получим:

(7)

Из равенства (7) следует, что для числа и не могут быть одновременно положительными.

Представленные преобразования позволяют сделать следующие выводы:

· для тождественных над множеством рациональных чисел многочленов (2) и (3) при число , как общий арифметический корень уравнений (1), (2) и (3), не может быть рациональным при целых положительных , , и ;

· многочлены (2) и (3) для и натуральных и не тождественны над множеством рациональных чисел, если делители и равенства (1) являются иррациональными, откуда следует иррациональность числа ;

· числа , и в равенстве (1) для не могут быть одновременно рациональными.

Для противоречие исчезает, коэффициенты при равны 1, а равенство свободных членов после подстановки значений и обращается в тождество:

. (8)

Если правую и левую части равенства (5) обозначить соответственно через и , где и - целые положительные числа, то многочлены (2) и (3) преобразуются в квадратные уравнения относительно :

(9),

где неизвестное обозначено общепринятым образом через , то есть .

Из условий эквивалентности или анализа причин неэквивалентности этих уравнений следуют те же выводы.

Это доказательство опубликовано в 1993 г. в журнале РАН «Вопросы истории естествознания и техники», №3.

Со стороны оппонентов не поступило никаких возражений по существу, кроме утверждения, что в используемых для доказательства уравнениях известные и неизвестные величины зависят друг от друга – как будто может быть иначе. Любое аналитическое выражение, в котором присутствуют известные и неизвестные величины, есть выражение зависимости между ними, поэтому я не могу согласиться с подобным опровержением.

Вариант№2

Пусть в равенстве числа и - взаимно простые, - нечетное. Для любых положительных чисел выполнима операция нахождения арифметического значения квадратного корня, то есть можно записать:

(1)

где , - действительные положительные множители числа .

Из (1) следует:

, (2)

В соответствии со свойствами показательной функции, для действительных положительных чисел , и целого существуют единственные значения показателей степени , удовлетворяющие равенствам:

, (3)

где , .

Из (3) следует , , или после сокращения на числа , получим:

(4)

Из (1), (2) и (3) следует:

, (5)

или, с учетом равенств (3) и (4):

(6)

Вынесем за скобки общий множитель :

(7)

Из (5) и (7) следует, что числа , и содержат общий множитель , что противоречит условию их взаимной простоты, если . Из следует , , то есть , , и равенства (5) и (7) принимают вид:

(8)

Из (8) следует, что при нечетном числа и также целые, причем всегда имеет место тождество:

(9)

что для одновременно целых , и выполнимо только при , или , , что и требовалось доказать.

Доказательство можно вести и несколько иным способом. Все числа равенства , где , и - произвольно выбранные натуральные числа, - действительное положительное число, через преобразования (1)…(4) могут быть выражены в виде слагаемых тождества (5).

Вынесем за скобки множитель и поделим на него все слагаемые тождества (5):

(10)

где .

В соответствии со свойствами показательной функции, произвольно выбранным натуральным числам , и , например из равенства (5), соответствует единственное значение , удовлетворяющее условию:

(11)

тогда , или

(12)

где , и - целые числа.

Из (10), (11) и (12) следует:

(13)

то есть числа и могут быть одновременно целыми только при , или , . При числа и есть последовательные целые числа. Еще Эвклидом доказано, что всякое нечетное число может быть выражено, как разность квадратов двух последовательных целых чисел, которые и могут быть найдены с помощью тождества (10) для любых целых и нечетных .

Отметим, что равенство (12) получено путем деления равенства (5) на множитель , при этом число в этих равенствах одно и то же, откуда следует , , , и тождество (10) принимает вид тождества (8).

Отметим также, что тождества (8) и (10) справедливы не только для целых значений . Подставляя вместо любую рациональную дробь и полагая , можно найти все Пифагоровы числа.

Приведенные преобразования равенства Ферма над множеством натуральных чисел показывают, что с помощью конечного числа арифметических действий оно всегда приводится к тождеству (13), что и доказывает теорему.

Я счел необходимым в дополнение к размещенному на сайте доказательству предложить и эти два варианта, один из которых в сравнении с ранее размещенным является более развернутым.

А.В.Бобров

Великая теорема Ферма

Бобров Александр Владимирович, 1936 г. р., образование высшее, закончил в 1960 году МВТУ им. Баумана по специальности инженер-механик. В настоящее время – пенсионер.

Домашний адрес: 123098, г. Москва, ул. Маршала Новикова, д. 10, корп.1, кв. 15.

Телефон (495) 193-42-34, моб. тел. 8-903-560-07-15

The evidence of the Fermat theorem

Alexander V. Bobrov

The evidence of the Fermat great theorem by elementary method is presented

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита08:27:55 04 ноября 2021
.
.08:27:53 04 ноября 2021
.
.08:27:51 04 ноября 2021
.
.08:27:49 04 ноября 2021
.
.08:27:46 04 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Статья: Великая теорема Ферма два коротких доказательства

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(288303)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте