Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Уравнения поверхности и линии в пространстве

Название: Уравнения поверхности и линии в пространстве
Раздел: Рефераты по математике
Тип: реферат Добавлен 10:42:35 10 июля 2011 Похожие работы
Просмотров: 329 Комментариев: 19 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Уравнения поверхности и линии в пространстве

Основные понятия

Поверхность и ее уравнение

Поверхность в пространстве, как правило, можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию. Например, сфера радиуса R с центром в точке О 1 есть геометрическое место всех точек пространства, находящихся от точки О1на расстоянии R.

Прямоугольная система координат О xyz в пространстве позволяет установить взаимно однозначное соответствие между точками пространства и тройками чисел x , y и z – их координатами. Свойство, общее всем точкам поверхности, можно записать в виде уравнения, связывающего координаты всех точек поверхности.

Уравнением данной поверхности в прямоугольной системе координат О xyz называется такое уравнение F ( x , y , z )=0 с тремя переменными x , y и z , которому удовлетворяют координаты каждой точки, лежащей на поверхности, и не удовлетворяют координаты точек, не лежащих на этой поверхности.

Уравнение поверхности позволяет изучение геометрических свойств поверхности заменить исследованием его уравнения. Так, для того, чтобы узнать, лежит ли точка М 1 ( x 1 ; y 1 ; z 1 ) на данной поверхности, достаточно подставить координаты точкиM1 в уравнение поверхности вместо переменных: если эти координаты удовлетворяют уравнению, то точка лежит на поверхности, если не удовлетворяют – не лежит.

Уравнение сферы

Найдем уравнение сферы радиуса R c центром в точке О 1 ( x 0 ; y 0 ; z 0 ) . Согласно определению сферы расстояние любой ее точки М( x , y , z ) от центра О 1 ( x 0 ; y 0 ; z 0 ) равно радиусу R , т.е. О 1 М = R . Но О 1 М=| | , где =( x - x 0 ; y - y 0 ; z - z 0 ). Следовательно,

=R

или

Это и есть искомое уравнение сферы. Ему удовлетворяют координаты любой ее точки и не удовлетворяют координаты точек, не лежащих на данной сфере.

Если центр сферы О 1 совпадает с началом координат, то уравнение сферы принимает вид

Если же дано уравнение вида F ( x ; y ; z ) =0, то оно, вообще говоря, определяет в пространстве некоторую поверхность.

Выражение «вообще говоря» означает, что в отдельных случаях уравнение F ( x ; y ; z ) =0 может определять не поверхность, а точку, линию или вовсе не определять никакой геометрический образ. Говорят, «поверхность вырождается».

Так, уравнению не удовлетворяют никакие действительные значения x , y , z . Уравнению удовлетворяют лишь координаты точек, лежащих на оси О x (из уравнения следует: y =0, z =0 , а x - любое число).

Итак, поверхность в пространстве можно задать геометрически и аналитически. Отсюда вытекает постановка двух основных задач:

1. Дана поверхность как геометрическое место точек. Найти уравнение этой поверхности.

2. Дано уравнение F ( x ; y ; z )=0. Исследовать форму поверхности, определяемой этим уравнением.

Уравнение линии в пространстве

Линию в пространстве можно рассматривать как линию пересечения двух поверхностей (см. рис. 1) или как геометрическое место точек, общих двум поверхностям.

Если F 1 ( x ; y ; z )=0 и F 2 ( x ; y ; z )=0 – уравнения двух поверхностей, определяющих линию L, то координаты точек этой линии удовлетворяют системе двух уравнений с тремя неизвестными:

Уравнения этой системы называются уравнениями линии в пространстве. Например, есть уравнения оси О x .

Линию в пространстве можно рассматривать как траекторию движения точки (см. рис. 2). В этом случае ее задают векторным уравнением

(t)

Рис. 1 Рис. 2

или параметрическими уравнениями

Проекцией вектора на оси координат.

Например, параметрические уравнения винтовой линии имеют вид

Если точка М равномерно движется по образующей кругового цилиндра, а сам цилиндр равномерно вращается вокруг оси, то точка М описывает винтовую линию (см. рис. 3).

Рис. 3

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита08:31:38 04 ноября 2021
.
.08:31:35 04 ноября 2021
.
.08:31:33 04 ноября 2021
.
.08:31:27 04 ноября 2021
.
.08:31:25 04 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Реферат: Уравнения поверхности и линии в пространстве

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287745)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте