Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Невласні інтеграли Поняття та різновиди невласних інтегралів

Название: Невласні інтеграли Поняття та різновиди невласних інтегралів
Раздел: Рефераты по математике
Тип: реферат Добавлен 07:17:57 17 января 2011 Похожие работы
Просмотров: 41 Комментариев: 19 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Невласні інтеграли

Поняття та різновиди невласних інтегралів

Згідно з теоремою існування визначеного інтеграла цей інте­грал існує, якщо виконані умови:

1) відрізок інтегрування [а, b] скінчений;

2) підінтегральна функція f(x) неперервна або обмежена і має скінченну кількість точок розриву. Якщо хоч би одна із умов не виконується, то визначений інтеграл називають невласним.

Якщо не виконується перша умова, тобто b = ∞ або а = ∞ або а = -∞ таb = ∞, то інтеграли називають невласними інтегралами з нескінченними межами.

Якщо не виконується лише друга умова, то підінтегральна функція f(x)має точки розриву другого роду на відрізку інтегрування [а, b]. В цьому випадку називають невласним інтегралом від розривної функції або від функції, необмеженої в точках відрізку інтегрування.

1. Невласні інтеграли з нескінченними межами інтегрування (невласні інтеграли першого роду).

Нехай функція f(х) визначена на проміжку [a; +∞) і інтегрована на будь-якому відрізку [а, b], де — ∞ < a< b< +∞. Тоді, якщо існує скінченна границя

(51)

її називають невласним інтегралом першого роду і позначають так:

(52)

Таким чином, за означенням

(53)

У цьому випадку інтеграл (52) називають збіжним, а підінтегральну функцію f(x)— інтегровною на проміжку [а; +∞).

Якщо ж границя (51) не існує або нескінченна, то інтеграл (52) називається також невласним, але розбіжним, а функція f(х) — неінтегровною на [a; +∞).

Аналогічно інтегралу (53) означається невласний інтеграл на проміжку (-∞; b]:

(54)

Невласний інтеграл з двома нескінченними межами визначається рівністю

(55)

де с — довільне дійсне число. Отже, інтеграл зліва у формулі (55) існує або є збіжним лише тоді, коли є збіжними обидва інтеграли справа. Можна довести, що інтеграл, визначений формулою (55), не залежить від вибору числа с.

З наведених означень видно, що не­власний інтеграл не є границею інтегра­льних сум, а є границею означеного ін­теграла із змінною межею інтегрування.

Зауважимо, що коли функція f(x)неперервна і невід'ємна на проміжку [а; +∞) і коли інтеграл (53) збігається, то природно вважати, що він виражає площу необмеженої області (рис. 7.12).

рис. 7.12

Приклад.

Обчислити невласний інтеграл або встановити його розбіжність:

а) б)

в) д)

а) За формулою (53) маємо

Отже інтеграл а) збігається.

б)

Оскільки ця границя не існує при а → -∞, то інтеграл б) розбіжний.

в)

Отже інтеграл в) розбіжний,

г) Якщо = 1, то

Якщо ≠ 1, то

Отже інтеграл г) є збіжним при > 1 і розбіжним при ≤ 1.

У розглянутих прикладах обчислення невласного інтеграла грунтувалося на його означенні. Проте у деяких випадках немає необхідності обчислювати інтеграл, а достатньо знати, збіжний він чи ні. Наводимо без доведення деякі ознаки збіжності.

Теорема 1. Якщо на проміжку [а; +∞) функції f(x) і g(x) неперервні і задовольняють умову 0 ≤ f(x)≤ g(x), то із збіжності інтеграла

(56)

випливає збіжність інтеграла

(57)

а із розбіжності інтеграла (57) випливав розбіжність інтеграла (56).

Наведена теорема має простий геометричний зміст (рис. 7.13); якщо площа більшої за розмірами необмеженої області є скінченне число, то площа меншої області є також скінченне число; якщо пло­ща меншої області нескінченно велика величина, то площа більшої області є також нескінченно велика величина.

Приклад

Дослідити на збіжність інтеграли:

а) ;

а) Оскільки :

і інтеграл збігається, то за теоремою і заданий інтеграл також збігається.

б) Цей інтеграл розбігається, бо :

і інтеграл розбігається.

Теорема 2. Якщо існує границя

, ,

то інтеграли (56) і (57) або одночасно обидва збігаються, або одно­часно розбігаються.

Ця ознака іноді виявляється зручнішою, ніж теорема 1, бо не потребує перевірки нерівності 0 £f(x)≤ g(х).

Приклад

Дослідити на збіжність інтеграл

Оскільки інтеграл збігається і

то заданий інтеграл також збігається.

В теоремах 1 і 2 розглядались невласні інтеграли від невід'єм­них функцій. У випадку, коли підінтегральна функція є знакозмінною, справедлива така теорема.

Теорема 3. Якщо інтеграл збігається, то збігається й інтеграл .

Приклад

Дослідити на збіжність інтеграл .

Тут підінтегральна функція знакозмінна. Оскільки

то заданий інтеграл збігається.

Слід зауважити, що із збіжності інтеграла не випливає, взагалі кажучи, збіжність інтеграла . Ця обставина виправдовує такі означення.

Якщо разом з інтегралом збігається й інтеграл , то інтеграл називають абсолютно збіжним, а функцію f(x) — абсолютно інтегровною на проміжку [а; +∞).

Якщо інтеграл збігається, а інтеграл розбігається, то інтеграл називають умовно (або неабсолютно) збіжним.

Тепер теорему 3 можна перефразувати так: абсолютно збіжний інтеграл збігається .

Отже, для знакозмінної функції викладені тут міркування дають змогу встановити лише абсолютну збіжність інтеграла. Якщо ж невласний інтеграл збігається умовно, то застосовують більш глибокі ознаки збіжності [II].

Приклад

Дослідити на збіжність інтеграл

Оскільки

то за теоремою 3 інтеграл збігається.

Отже, збігається, причому абсолютно, і заданий інтеграл, а функція f(x)= на проміжку [0; +∞) є абсолютно інтегровною.

2. Невласні інтеграли від необмежених функцій (невласні інтеграли другого роду).

Нехай функція f(x)визначена на про­міжку [а, b). Точку х = bназвемо особливою точкою функції f(х), якщо f(x) ∞ при х b - 0 (рис. 7.14). Нехай функція f(x)інтегровна на відрізку [а; b— ] при довільному > 0 такому, що b - > ; тоді, якщо існує скінченна границя

(58)

її називають невласним інтегралом другого роду і позначають так:

(59)

Отже, за означенням

У цьому випадку кажуть, що інтеграл (59) існує або збігається. Якщо ж границя (58) нескінченна або не існує, то інтеграл (59) також називають невласним інтегралом, але розбіжним.

Аналогічно якщо х = — особлива точка (рис. 7.15), то невласний інтеграл визначається так:

Якщо f(x) необмежена в околі якої-небудь внутрішньої точки с0 (а; b), то за умови існування обох невласних інтегралів і за означенням покладають (рис. 7.16).

Нарешті, якщо а та b— особливі точки, то за умови існування обох невласних інтегралів і за означенням покладають

де с — довільна точка інтервалу (а; b).

Приклад

Обчислити невласні інтеграли:

а) ; б)

а)

Отже, інтеграл а) збіжний.

б) Якщо ¹ 1, то

Якщо = 1, то

Таким чином, інтеграл б) збігається при 0 < < 1 і розбігається при ³ 1.

Бета-функція, або інтеграл Ейлера першого роду, визначається формулою

(91)

Можна довести, що для всіх (0, +∞) і (0, +∞) інтег­рал (91) збігається. Варто зазначити, що відповідний невизначений інтеграл , згідно з теоремою Чебишева (п. 1.7), виражається через елементарні функції лише в окремих випадках. Отже, бета-функція не є елементарною.

Гамма-функцією, або інтегралом Ейлера другого роду, називається інтеграл

(92)

Покажемо, що невласний інтеграл (92) при > 0 збігається. Маємо

Перший інтеграл в правій частині цієї рівності збігається, бо

Другий інтеграл також збігається. Справді, якщо n — довільне натуральне число таке, що n > — 1, то

,

в чому можна пересвідчитись, обчислюючи останній інтеграл части­нами і враховуючи, що

Отже, інтеграл (92) при > 0 збігається і визначає деяку функцію, яку і називають гамма-функцією Г().

Обчислимо значення Г() при а N. Якщо = 1, то

(93)

Нехай n + 1 інтегруючи частинами, дістанемо

звідки

Г(n +1) = nГ(n) (94)

З рівностей (93) і (94) випливає, що nN:

Г(n +1) = n!

Таким чином, гамма-функція для цілих значень n N виражається через n!. Проте вона визначена і для нецілих додатних значень аргументу, тобто продовжує факторіальну функцію з дискретних значень аргументу на неперерв­ні. Гамма-функція не є елементарною функцією. Графік цієї функції зображено на рис. 7.35. Властивості гамма-функції досить добре ви­вчені і значення її протабульовані в багатьох довідниках, наприклад в [19].

Наводимо без доведення формулу Стірлінга для гамма-функції:

де > 0 і 0 < () < 1. Якщо в цій рівності покласти = nі помножити її на n, дістанемо

(95)

Бета- і гамма-функції пов'язані між собою співвідношенням

(96)

Приклади

1. Знайти Г

Згідно з формулою (96), при = = маємо

отже, Г=.

2. Обчислити інтеграл Ейлера — Пуассона

Враховуючи результат попереднього прикладу, дістанемо

3. Виразити інтеграл через бета-функцію наближено при = 3, = .

Маємо

Зокрема, при = 3 і = згідно з формулою (96) дістанемо

Завдання для самоконтролю

1. Які інтеграли називаються інтегралами, залежними від параметра?

2. Сформулювати теореми про неперервність, диференціювання та інтегрування Інтеграла, залежного від параметра.

1. 3. Дати означення гамма-функції Г().

3. Довести, що Г(n +1) = n!, n N.

4. Дати означення бета-функції В(,). Як пов'язані між собою бета- та гам­ма-функції?

5. Довести, що

Вказівка. Скористатись підстановкою sinx=.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита10:59:26 04 ноября 2021
.
.10:59:24 04 ноября 2021
.
.10:59:21 04 ноября 2021
.
.10:59:17 04 ноября 2021
.
.10:59:12 04 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Реферат: Невласні інтеграли Поняття та різновиди невласних інтегралів

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287973)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте