Министерство образования Российской Федерации
Ангарская Государственная Техническая академия
Кафедра Химической технологии топлива
Пояснительная записка к курсовому проекту.
Тема проекта: “Блок ВП(м), установка ГК-3”
Выполнил:
ст-нт гр.ТТ-99-1
Семёнов И. А.
Проверил:
проф.., к.т.н.
Щелкунов Б.И.
Ангарск 2003
Содержание:
Введение 3
- Материальный баланс 4
- Определение рабочего флегмового числа и числа теоретических тарелок для 1-й секции 5
- Расчёт физико-химических свойств смеси в верхней и нижней частях 9
- Гидравлический расчёт колпачковых тарелок 1-й секции 11
- Расчёт эффективности тарелок и высоты 1-й секции 21
- Определение рабочего флегмового числа и числа теоретических тарелок для 2-й секции 23
- Расчёт физико-химических свойств смеси. 26
- Гидравлический расчёт колпачковых тарелок 2-й секции 27
- Расчёт эффективности тарелок и высоты 2-й секции. 32
- Тепловой баланс колонны 33
- Расчёт штуцеров колонны 35
- Расчёт теплоизоляции 37
Список литературы 38
Введение
Ректификация является одним из важнейших технологических процессов разделения и очистки жидкостей и сжиженных газов в химической, нефтехимической, фармацевтической, пищевой и других отраслях промышленности. Это массообменный процесс, который осуществляется в большинстве случаев в противоточных колонных аппаратах с контактными элементами. Ректификация – это наиболее полное разделение смесей жидкостей, целиком или частично растворимых друг в друге. Процесс заключается в многократном взаимодействии паров с жидкостью – флегмой, полученной при частичной конденсации паров. Процесс основан на том, что жидкости, составляющие смесь, обладают различным давлением пара при одной и той же температуре. Поэтому состав пара, а следовательно, и состав жидкости, получающейся при конденсации пара, будут несколько отличаться от состава начальной смеси: легколетучего компонента в паре будет содержаться больше, чем в перегоняемой жидкости. Очевидно, что в неиспарившейся жидкости концентрация труднолетучего компонента при этом должна увеличиться.
Технологический расчёт колонны
В колонну поступает 76000 кг/ч сырья (мазута).Продуктами перегонки являются:
- Фракция НК-350 о
С (пары и газы разложения).
- Фракция 350-500 о
С (вакуумный погон).
- Фракция 500-КК о
С (гудрон).
Давление в колонне равно
Материальный баланс колонны
Материальный баланс колонны составляем на основе данных о выходах (табл. 1) продуктов из сырья.
Таблица 1.
Наименование продукта
|
Выход, % масс.
|
Вакуумный погон (фр. 350 – 500 o
C)
|
34,3
|
Гудрон (фр. свыше 500 o
C)
|
62,7
|
Газы разложения
|
3
|
Итого:
|
100
|
Расчёт:
1. Расход вакуумного погона:
2. Расход гудрона:
3. Расход паров и газов разложения:
Все результаты расчёта по колонне заносим в таблицу 2.
Таблица 2.
Материальный баланс по колонне
Приход
|
Расход
|
Наименование
|
Расход, кг/ч
|
Наименование
|
Расход, кг/ч
|
Мазут
|
76000
|
Пары разложения
|
2280
|
|
|
Вакуумный погон
|
26068
|
|
|
Гудрон
|
47652
|
Итого:
|
76000
|
Итого:
|
76000
|
Считаем материальный баланс по каждой секции:
Таблица 3.
Материальный баланс 1-й секции
Приход
|
Расход
|
Наименование
|
%
|
кг/ч
|
Наименование
|
%
|
кг/ч
|
Мазут
|
|
|
(пар.фаза)
|
|
|
(пар.фаза)
|
|
|
Пары разложения
|
37,30
|
2280
|
Пары разложения
|
37,30
|
2280
|
Вакуумный погон
|
26068
|
Вакуумный погон
|
26068
|
(жидкая фаза)
|
|
|
Гудрон
|
62,70
|
47652
|
Гудрон
|
62,70
|
47652
|
Итого:
|
100
|
76000
|
Итого:
|
100
|
76000
|
Таблица 4.
Материальный баланс 2-й секции
Приход
|
Расход
|
Наименование
|
%
|
кг/ч
|
Наименование
|
%
|
кг/ч
|
(пар.фаза)
|
|
|
(пар.фаза)
|
|
|
Пары разложения
|
8,04
|
2280
|
Пары разложения
|
8,04
|
2280
|
Вакуумный погон
|
91,96
|
26068
|
(жидкая фаза)
|
|
|
|
|
|
Вакуумный погон
|
91,96
|
26068
|
Итого:
|
100
|
28348
|
Итого:
|
100
|
28348
|
Определение рабочего флегмового числа и числа теоретических тарелок для 1-й секции.
Для выполнения расчёта заменяем имеющиеся фракции углеводородов на простые алканы нормального строения:
1. Фракция НК-350 о
С. Так как данная фракция состоит преимущественно из паров диз. топлива, то за НК примем температуру равную 240 о
C. Средняя температура равна: (350+240)/2=295 о
С.
Принимаем: н-гексадекан (С16
Н34
), tкип
=287 о
С, М=226 кг/кмоль.
2. Фракция 350-500 о
С. tср
=(350+500)/2 = 425 о
С.
Принимаем: н-гексакозан (С26
Н54
), tкип
=417 о
С, М=366 кг/кмоль.
3. Фракция 500-КК о
С
Принимаем: н-пентатриаконтан (С35
Н72
), tкип
=511 о
С, М=492 кг/кмоль.
Заменяем перегоняемую смесь углеводородов в 1-й секции на бинарную смесь. В качестве низкокипящеко (НК) компонента принимаем н-гексакозан (С26
Н54
), а в качестве выкокипящего (ВК) - н-пентатриаконтан (С35
Н72
).
Производим расчёт мольных концентрация на входе и на выходах из секции.
Мольную концентрацию на входе определяем на основе массовой концентрации, которую рассчитали в материальном балансе 1-й секции (табл. 3).
Состав куба дистиллята определяется на основе ср. температур кипения фракции и рассчитывается по формуле:
где Pатм
- атмосферное давление, PНК
и PВК
–давление насыщенных паров индивидуальных компонентов при температуре фракции, определяются по уравнению Антуана:
, [Па.]
где A, В, С – параметры Антуана для каждого компонента. t- температура, о
С.
Параметры уравнения для каждого компонента приведены в таблице 5.
Таблица 5.
Параметры уравнения Антуана
Наименование
|
Коэф-нты
|
А
|
В
|
С
|
н-гексадекан
|
7,03044
|
1831,317
|
154,528
|
н-гексакозан
|
7,62867
|
2434,747
|
96,1
|
н-пентатриаконтан
|
5,778045
|
1598,23
|
40,5
|
Расчёт состава куба: PНК
и PВК
рассчитываются при температуре равной 500 о
С.
Расчёт состава дистиллата: PНК
и PВК
рассчитываются при температуре равной 425 о
С.
Температуры на выходе из дистиллата и куба определяем по формуле методом последовательного приближения:
Температура на выходе из дистиллата равна: tD
=363 о
С
Температура на выходе из куба равна: tW
=408 о
С
Температура на входе равна: tF
=376 о
С
Определяем относительную летучесть по формуле:
При температуре tD
=363 о
С
При температуре tW
=408 о
С
Средняя относительная летучесть:
Строим кривую равновесия по формуле:
Рис.1 Кривая равновесия
Состав пара уходящего с питательной тарелки равен yf
=0,738 мол.дол.
Рассчитываем минимальное флегмовое число:
Оптимальное (рабочее) флегмовое число определяем на основе критерия оптимальности :, где . Зависимость критерия оптимальности от коэффициента избытка флегмы изображена на рисунке 2.
Рис.2 Зависимость критерия оптимальности от коэф-та избытка флегмы
По графику определяем что . Отсюда находимо рабочее флегмовое число:
Исходя из рабочего флегмового числа строим рабочую линию и определяем теоретическое число тарелок в верхней и нижней части секции.
Рис.3 Теоретические ступени
Число теоретических тарелок NТТ
=6
Число теоретических тарелок в нижней части NН
=4
Число теоретических тарелок в верхней части NВ
=2
Расчёт физико-химических свойств смеси в верхней и нижней частях.
Расчёт средних концентраций жидкости:
Расчёт средних концентраций пара:
Средние температуры верха и низа:
Определяются по той же формуле что и температуры на выходе из дистиллата и куба.
Средние молекулярные массы пара:
Средние молекулярные массы жидкости:
Средние плотности пара:
Средние массовые доли:
Средние плотности жидкости:
Плотность НК компонента при температур tН
=388 о
С равна
Плотность ВК компонента при температур tН
=388 о
С равна
Плотность НК компонента при температур tВ
=369 о
С равна
Плотность ВК компонента при температур tВ
=369 о
С равна
Средние вязкости жидкости:
Вязкость НК компонента при температур tН
=388 о
С равна
Вязкость ВК компонента при температур tН
=388 о
С равна
Вязкость НК компонента при температур tВ
=369 о
С равна
Вязкость ВК компонента при температур tВ
=369 о
С равна
Средние коэффициенты диффузии жидкости и пара:
Для низа колонны:
Для верха колонны:
Гидравлический расчёт колпачковых тарелок 1-й секции.
Определяем количество пара поднимающегося вверх по колонне. Примем допущение, что расход пара во всей колонне является величиной постоянной и находится:
Определяем расход жидкости в верхней и нижней части колонны:
Для расчёта диапазон колебания нагрузки принимаем равными:
К3
=0,8 – коэффициент уменьшения нагрузки
К4
=1,1 – коэффициент увеличения нагрузки
1. Диапазон колебания нагрузки.
Такое значение приемлемо для колпачковых тарелок.
2. Расчёт оценочной скорости для нижней части:
Для верхней части:
3. Диаметр нижней части:
Верхней части:
4. Так как диаметры оказались одинаковыми принимаем колонну одного диаметра DК
=2,4 м
Действительную скорость пара в нижней части находим:
В верхней части:
5. По таблице 6 [1] периметр слива и относительное сечение перелива . Относительная активная площадь тарелки:
6. Фактор нагрузки для нижней части колонны:
Для верхней части:
Коэффициент поверхностного натяжения для нижней части колонны:
Для верхней части:
Принимая минимальное расстояние между тарелками , по табл. 6.7 [1] определяем комплекс В1
для верхней и нижней частей колонны:
Допустимая скорость пара в рабочем сечении колонны для нижней части:
Для верхней части:
7. Проверяем условие допустимости скоростей пара для верхней и нижней частей колонны:
Условие не выполняется, поэтому необходимо увеличивать межтарельчатое расстояние, а при достижении максимального значения принимать тарелку большего диаметра до тех пор пока условие не сойдётся. Расчёт для нижней и верхней частей колонны ведём раздельно.
Расчёт нижней части секции:
Принимаем следующее диаметр:
Принимаем следующее диаметр:
Принимаем следующее диаметр:
Принимаем следующее диаметр:
Увеличиваем межтарельчатое расстояние:
Увеличиваем межтарельчатое расстояние:
Увеличиваем межтарельчатое расстояние:
Условие выполнилось. Продолжаем расчёт дальше.
8. Удельная нагрузка на перегородку в нижней части:
Условие не выполняется. Увеличиваем диаметр колонны:
Увеличиваем межтарельчатое расстояние:
Условие выполнилось. Продолжаем расчёт дальше.
Удельная нагрузка на перегородку в нижней части:
Условие не выполняется. Увеличиваем диаметр колонны:
Условие выполнилось. Продолжаем расчёт дальше.
8. Удельная нагрузка на перегородку в нижней части:
Условие выполнилось. Продолжаем расчёт дальше.
9. Фактор паровой нагрузки:
Подпор жидкости над сливным порогом:
10. Глубина барботажа hб
=0,03 м (табл. 6.4. [1]), высота прорези колпачка h3
=0,02 м (табл. 6.10. [1]), зазор установки колпачка h4
=0,018 м (табл. 6.8. [1]).
Высота парожидкостного слоя на тарелках:
11. Высота сливного порога:
12. Градиент уровня жидкости на тарелке:
13. Динамическая глубина барботажа:
14. Значение комплекса В2
(табл. 6.9. [1]):
Минимально допустимая скорость пара в свободном сечении тарелок:
Относительное свободное сечение тарелок (табл. 6.6.). Коэффициент запаса сечения тарелок:
Так как К1
<1, то пар будет проходить лишь через отдельные колпачка. Контакт пара и жидкости окажется не достаточно эффективным, но положение можно исправить, уменьшив число колпачков.
Выбираем площадь прорезей колпачка S3
=0,0046 м2
(табл. 6.10 [1]) и определяем скорость пара в прорезях:
Максимальная скорость пара в прорезях колпачка:
Коэффициент В5
берётся по табл. 6.11. [1].
Степень открытия прорезей колпачка:
Условие выполняется и пар проходит через все сечения прорезей и тарелка работает эффективно.
15. Фактор аэрации:
16. Коэффициент гидравлического сопротивления тарелки (табл. 6.13 [1]).
Гидравлическое сопротивление тарелок:
17. Коэффициент вспениваемости при вакуумной перегонки мазута К5
=0,75
Высота сепарационного пространства между тарелками:
18. Межтарельчатый унос жидкости:
Величина не превышает 0,1 кг/кг. Продолжаем расчёт.
19. Площадь поперечного сечения колонны:
Скорость жидкости в переливных устройствах:
Допустимая скорость жидкости в переливных устройствах:
Действительные скорости жидкости меньше допустимых. Таким образом для нижней части 1-й секции принимаем данную тарелку.
Расчёт верхней части секции:
Для упрощения конструкции колонны в верхней части секции принимаем тарелки того же диаметра что и в нижней DК
= 3,6 м
1.Действительную скорость пара в верхней части:
2. По таблице 6 [1] периметр слива и относительное сечение перелива . Относительная активная площадь тарелки:
3. Фактор нагрузки для верхней части колонны:
Коэффициент поверхностного натяжения для верхней части секции:
Принимая минимальное расстояние между тарелками , по табл. 6.7 [1] определяем комплекс В1
:
Допустимая скорость пара в рабочем сечении колонны:
4. Проверяем условие допустимости скоростей пара:
Условие не выполняется, поэтому необходимо увеличивать межтарельчатое расстояние, а при достижении максимального значения принимать тарелку большего диаметра до тех пор пока условие не сойдётся.
Условие выполнилось. Продолжаем расчёт дальше.
5. Удельная нагрузка на перегородку в нижней части:
Условие выполнилось. Продолжаем расчёт дальше.
6. Фактор паровой нагрузки:
Подпор жидкости над сливным порогом:
7. Глубина барботажа hб
=0,03 м (табл. 6.4. [1]), высота прорези колпачка h3
=0,02 м (табл. 6.10. [1]), зазор установки колпачка h4
=0,018 м (табл. 6.8. [1]).
Высота парожидкостного слоя на тарелках:
8. Высота сливного порога:
9. Градиент уровня жидкости на тарелке:
10. Динамическая глубина барботажа:
11. Значение комплекса В2
(табл. 6.9. [1]):
Минимально допустимая скорость пара в свободном сечении тарелок:
Относительное свободное сечение тарелок (табл. 6.6. [1]). Коэффициент запаса сечения тарелок:
Так как К1
>1, то пар будет проходить через тарелку равномерно.
Выбираем площадь прорезей колпачка S3
=0,0046 м2
(табл. 6.10 [1]) и определяем скорость пара в прорезях:
Максимальная скорость пара в прорезях колпачка:
Коэффициент В5
берётся по табл. 6.11. [1].
Степень открытия прорезей колпачка:
Условие выполняется и пар проходит через все сечения прорезей и тарелка работает эффективно.
12. Фактор аэрации:
13. Коэффициент гидравлического сопротивления тарелки (табл. 6.13 [1]).
Гидравлическое сопротивление тарелок:
14. Коэффициент вспениваемости при вакуумной перегонки мазута К5
=0,75
Высота сепарационного пространства между тарелками:
15. Межтарельчатый унос жидкости:
Величина не превышает 0,1 кг/кг. Продолжаем расчёт.
16. Площадь поперечного сечения колонны:
Скорость жидкости в переливных устройствах:
Допустимая скорость жидкости в переливных устройствах:
Действительные скорости жидкости меньше допустимых.
Таким образом для верха и низа секции принимаем одинаковую тарелку.
Больше всего подходит стандартная тарелка ТСК-Р, которая имеет следующие характеристики:
Диаметр тарелки: D = 3600 мм;
Периметр слива: lw
= 2,88 м;
Высота сливного порога: ; ;
Свободное сечение тарелки:
Сечение перелива:
Относительная площадь для прохода паров: ;
Межтарельчатое расстояние: ; ;
Количество колпачков: ; ;
Работа тарелки характеризуется следующими параметрами:
Высота парожидкостного слоя:
Фактор аэрации:
Гидравлическое сопротивление тарелки:
Межтарельчатый унос:
Скорость жидкости в переливе:
Скорость пара в колонне:
Расчёт эффективности тарелок и высоты 1-й секции.
1. Определяем значение критерия Фурье для колпачковой тарелки:
2. Определяем общее числа единиц переноса:
Для верха колонны:
3. Локальная эффективность контакта:
Для верха колонны:
4. Эффективность тарелки по Мэрфи:
Для верха колонны:
5. Действительное число тарелок:
Для верха колонны:
6. Рабочая высота секции для низа:
Для верха:
Общая рабочая высота:
7. Общая высота секции:
Определение рабочего флегмового числа и числа теоретических тарелок для 2-й секции.
Расчёт второй секции колонны производим только для верхней части.
Заменяем перегоняемую смесь углеводородов во 2-й секции на бинарную смесь. В качестве низкокипящеко (НК) компонента принимаем н-гексадекан (С16
Н34
), а в качестве выкокипящего (ВК) - : н-гексакозан (С26
Н54
).
Производим расчёт мольных концентрация на входе и на выходах из секции.
Мольную концентрацию на входе определяем на основе массовой концентрации, которую рассчитали в материальном балансе 2-й секции (табл. 3).
Расчёт состава дистиллата: PНК
и PВК
рассчитываются при температуре равной 295 о
С.
Температуры на выходе из дистиллата и куба определяем по формуле методом последовательного приближения:
Температура на выходе из дистиллата равна: tD
=235 о
С
Температура на входе равна: tF
=308 о
С
Определяем относительную летучесть по формуле:
При температуре tD
=235 о
С
При температуре tW
=308 о
С
Средняя относительная летучесть:
Строим кривую равновесия по формуле:
Рис.1 Кривая равновесия
Состав пара уходящего с питательной тарелки равен yf
=0,501 мол.дол.
Рассчитываем минимальное флегмовое число:
Оптимальное (рабочее) флегмовое число определяем на основе критерия оптимальности :, где . Зависимость критерия оптимальности от коэффициента избытка флегмы изображена на рисунке 2.
Рис.2 Зависимость критерия оптимальности от коэф-та избытка флегмы
По графику определяем что . Отсюда находимо рабочее флегмовое число:
Исходя из рабочего флегмового числа строим рабочую линию и определяем теоретическое число тарелок в верхней и нижней части секции.
Рис.3 Теоретические ступени
Число теоретических тарелок NТТ
=3
Расчёт физико-химических свойств смеси.
Расчёт средней концентрации жидкости:
Расчёт средней концентрации пара:
Расчёт средней температуры:
Определяются по той же формуле что и температуры на выходе из дистиллата.
Средняя молекулярная масса пара:
Средняя молекулярная масса жидкости:
Средняя плотность пара:
Средняя массовая доля:
Средняя плотность жидкости:
Плотность НК компонента при температур t =256 о
С равна
Плотность ВК компонента при температур t =256 о
С равна
Средняя вязкость жидкости:
Вязкость НК компонента при температур t =256 о
С равна
Вязкость ВК компонента при температур t =256 о
С равна
Средние коэффициенты диффузии жидкости и пара:
Для низа колонны:
Гидравлический расчёт колпачковых тарелок 2-й секции.
Определяем количество пара поднимающегося вверх по колонне. Примем допущение, что расход пара во всей колонне является величиной постоянной и находится:
Определяем расход жидкости в верхней и нижней части колонны:
1. Расчёт оценочной скорости:
2. Определяем диаметр:
3. Принимаем колонну диаметра DК
=1,0 м
Действительную скорость пара в нижней части находим:
4. По таблице 6 [1] периметр слива и относительное сечение перелива . Относительная активная площадь тарелки:
5. Фактор нагрузки:
Коэффициент поверхностного натяжения:
Принимая минимальное расстояние между тарелками , по табл. 6.7 [1] определяем комплекс В1
:
Допустимая скорость пара в рабочем сечении колонны:
6. Проверяем условие допустимости скоростей пара для верхней и нижней частей колонны:
Условие не выполняется, поэтому необходимо увеличивать межтарельчатое расстояние, а при достижении максимального значения принимать тарелку большего диаметра до тех пор пока условие не сойдётся.
Увеличиваем межтарельчатое расстояние:
Увеличиваем межтарельчатое расстояние:
Увеличиваем межтарельчатое расстояние:
Увеличиваем межтарельчатое расстояние:
Условие выполнилось. Продолжаем расчёт дальше.
7. Удельная нагрузка на перегородку:
Условие выполнилось. Продолжаем расчёт дальше.
8. Фактор паровой нагрузки:
Подпор жидкости над сливным порогом:
9. Глубина барботажа hб
=0,03 м (табл. 6.4. [1]), высота прорези колпачка h3
=0,02 м (табл. 6.10. [1]), зазор установки колпачка h4
=0,01 м (табл. 6.8. [1]).
Высота парожидкостного слоя на тарелках:
10. Высота сливного порога:
11. Градиент уровня жидкости на тарелке:
12. Динамическая глубина барботажа:
13. Значение комплекса В2
(табл. 6.9. [1]):
Минимально допустимая скорость пара в свободном сечении тарелок:
Относительное свободное сечение тарелок (табл. 6.6. [1]). Коэффициент запаса сечения тарелок:
Так как К1
>1, то пар будет проходить через тарелку равномерно.
Выбираем площадь прорезей колпачка S3
=0,0023 м2
(табл. 6.10 [1]) и определяем скорость пара в прорезях:
Максимальная скорость пара в прорезях колпачка:
Коэффициент В5
берётся по табл. 6.11. [1].
Степень открытия прорезей колпачка:
Условие выполняется и пар проходит через все сечения прорезей и тарелка работает эффективно.
14. Фактор аэрации:
15. Коэффициент гидравлического сопротивления тарелки (табл. 6.13 [1]).
Гидравлическое сопротивление тарелок:
17. Коэффициент вспениваемости при вакуумной перегонки мазута К5
=0,75
Высота сепарационного пространства между тарелками:
18. Межтарельчатый унос жидкости:
Величина не превышает 0,1 кг/кг. Продолжаем расчёт.
19. Площадь поперечного сечения колонны:
Скорость жидкости в переливных устройствах:
Допустимая скорость жидкости в переливных устройствах:
Действительная скорость жидкости меньше допустимых. Таким образом для 2-й секции принимаем данную тарелку.
Больше всего подходит стандартная тарелка ТСК-Р, которая имеет следующие характеристики:
Диаметр тарелки: D = 1000 мм;
Периметр слива: lw
= 0,683м;
Высота сливного порога: ;
Свободное сечение тарелки:
Сечение перелива:
Относительная площадь для прохода паров: ;
Межтарельчатое расстояние: ;
Количество колпачков: ;
Работа тарелки характеризуется следующими параметрами:
Высота парожидкостного слоя:
Фактор аэрации:
Гидравлическое сопротивление тарелки:
Межтарельчатый унос:
Скорость жидкости в переливном устройстве:
Скорость пара в колонне:
Расчёт эффективности тарелок и высоты 2-й секции.
1. Определяем значение критерия Фурье для колпачковой тарелки:
2. Определяем общее числа единиц переноса:
3. Локальная эффективность контакта:
4. Эффективность тарелки по Мэрфи:
5. Действительное число тарелок:
6. Рабочая высота секции для низа:
7. Общая высота секции:
Тепловой баланс колонны.
Для расчёта энтальпий углеводородов воспользуемся формулами:
Для жидких углеводородов:
Для газообразных углеводородов:
Расчёт 1-й секции:
Приход:
1. Паровая фаза:
а) фр. НК-350 о
С
б) фр. 350-500 о
С
в) Водяной пар (15 ата; t = 420 о
С)
2. Жидкая фаза:
а) фр. 500-КК о
С
Расход:
1. Паровая фаза:
а) фр. НК-350 о
С
б) фр. 350-500 о
С
в) Водяной пар (15 ата; t = 420 о
С)
2. Жидкая фаза:
а) фр. 500-КК о
С
Результаты расчёта заносим в таблицу 6.
Таблица 6.
Тепловой баланс 1-й секции колонны
Приход
|
Расход
|
Наименование
|
t, o
C
|
кг
/
ч
|
кДж/кг
|
кДж/ч
|
Наименование
|
t, o
C
|
кг/ч
|
кДж/кг
|
кДж/ч
|
Мазут
|
|
|
|
|
Паровая фаза:
|
|
|
|
|
Паровая фаза:
|
|
|
|
|
нк - 350
|
385
|
2280
|
1414,163
|
3224291,24
|
нк - 350 о
С
|
420
|
2280
|
1516,414
|
3457423,97
|
фр. 350 - 500
|
385
|
26068
|
1384,908
|
36101783,6
|
фр. 350 – 500
|
420
|
26068
|
1485,149
|
38714861,93
|
Вод. пар
|
385
|
5000
|
3251,5
|
16257500
|
Жидкая фаза:
|
|
|
|
|
Жидкая фаза
|
|
|
|
|
Гудрон
|
420
|
47652
|
971,820
|
46309170,65
|
Гудрон
|
400
|
47652
|
912,462
|
43480621,5
|
Вод. пар
|
480
|
5000
|
3282,4
|
16412000
|
|
|
|
|
|
Итого:
|
|
81000
|
|
104893456,6
|
Итого:
|
|
81000
|
|
99064196,4
|
Избыток тепла в 1-й секции составляет:
Расчёт 2-й секции производим по такой же схеме и результаты выводим в таблицу 7.
Таблица 7.
Тепловой баланс 2-й секции колонны
Приход
|
Расход
|
Наименование
|
t, o
C
|
кг
/
ч
|
кДж/кг
|
кДж/ч
|
Наименование
|
t, o
C
|
кг/ч
|
кДж/кг
|
кДж/ч
|
Паровая фаза:
|
|
|
|
|
Паровая фаза:
|
|
|
|
|
нк - 350
|
385
|
2280
|
1414,16
|
3224291,24
|
нк - 350
|
100
|
2280
|
749,797
|
1709537
|
фр. 350 - 500
|
385
|
26068
|
1384,91
|
36101783,6
|
Вод. пар
|
100
|
5000
|
2689,9
|
13449500
|
Вод. пар
|
385
|
5000
|
3251,5
|
16257500
|
Жидкая фаза
|
|
|
|
|
|
|
|
|
|
фр. 350 - 500
|
385
|
26068
|
941,64
|
24546565
|
Итого:
|
|
33348
|
|
55583574,8
|
Итого:
|
|
33348
|
|
39705601,7
|
Избыток тепла в 1-й секции составляет:
Избытки тепла в секциях снимаются за счёт циркуляционных орошений.
В качестве НЦО примем флегму 1-й секции.
Температуру, до которой необходимо охладить флегму, найдём из энтальпии возвращаемой флегмы:
Решая уравнение получаем значение температуры
t = 255 о
С
Избыток тепла во второй секции снимаем за счёт подачи охлаждённой флегмы до 40 о
С, а так же за счёт ВЦО:
Расход ВЦО найдём по уравнению:
Расчёт штуцеров колонны
Расчёт диаметров штуцеров производим на основе скорости движения потоков по формуле:
1. Внутренний диаметр штуцера для входа исходного сырья:
Принимаем скорость движения сырья
Принимаем штуцер с внутренним диаметром равным D1
=0,4 м
2. Внутренний диаметр штуцера для входа водяного пара:
Принимаем скорость движения сырья
Принимаем штуцер с внутренним диаметром равным D2
=0,2 м
3. Внутренний диаметр штуцера для выхода гудрона:
Принимаем скорость движения сырья
Принимаем штуцер с внутренним диаметром равным D3
=0,2 м
4. Внутренний диаметр штуцера для выхода вакуумного погона:
Принимаем скорость движения сырья
Принимаем штуцер с внутренним диаметром равным D4
=0,15 м
5. Внутренний диаметр штуцера для входа флегмы в 1-ю секцию:
Принимаем скорость движения сырья
Принимаем штуцер с внутренним диаметром равным D5
=0,125 м
6. Внутренний диаметр штуцера для выхода паров углеводородов с верха колонны:
Принимаем скорость движения сырья
Принимаем штуцер с внутренним диаметром равным D6
=0,25 м
7. Внутренний диаметр штуцера для входа флегмы во 2-ю секцию:
Принимаем скорость движения сырья
Принимаем штуцер с внутренним диаметром равным D7
=0,04 м
Расчёт теплоизоляции
В качестве теплоизолирующего материала примем минеральную вату.
Принимаем температуру окружающего воздуха tо
=20 о
С и ветер, движущийся со скоростью w=10 м/с. Так же принимаем коэффициент теплоотдачи от изоляционного материала в окружающую среду . Температура стенки изоляционного материала по технике безопасности не должна превышать 45 о
С. Принимаем её равной
Тепловые потери:
Приближённо принимаем, что всё термическое сопротивление сосредоточено в слое изоляции, тогда толщина слоя изоляционного материала определяется уравнением:
где теплопроводность изоляционного материала при средней температуре; q –
удельная тепловая нагрузка; - средняя температура по колонне и температура внешней стенки изоляционного материала.
Список литературы
- Ульянов Б.А., Асламов А.А., Щелкунов Б.И. Ректификация бинарных и многокомпонентных смесей: Уч. Пособие – Иркутск: Изд-во ИрГТУ, 1999-240 с.
- Ульянов Б.А., Щелкунов Б. И. Гидравлика контактных тарелок: Уч. Пособие – Иркутск: Изд-во ИрГТУ, 1996 г.
- Дытнерский Ю.И. Основные процессы и аппараты химической технологии: М. 1991 г.
- Татевский А.Е. Физико-химические свойства индивидуальных углеводородов: М. 1960г. –412 с.
- Иоффе И.Л. Проектирование процессов и аппаратов химической технологии: М. 1991г.
- Павлов К.Ф. Примеры и задачи по курсу процессов и аппаратов.: М. 1987 г.
- Толчинский А.Р. Основы конструирования и расчёта химической аппаратуры.: М. 1970г.
|