Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Найти пределы функций, не пользуясь правилом Лопиталя

Название: Найти пределы функций, не пользуясь правилом Лопиталя
Раздел: Рефераты по математике
Тип: реферат Добавлен 18:52:19 05 сентября 2011 Похожие работы
Просмотров: 89 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Задача №1

Зависимости координат от времени при движении материальной точки в плоскости и имеют вид:

Определить модуль скорость () и ускорение () этой точки в момент времени .

Решение

А. Модуль скорости материальной точки от времени выражается по формуле:

Следовательно,

Б. . Модуль ускорения материальной точки от времени выражается по формуле:

Данные уравнения описывают движение материальной точки с постоянным ускорением .

Задача №2

Спутник вращается вокруг земли по круговой орбите на высоте . Определите линейную и угловую скорости спутника. Ускорение свободного падения у поверхности Земли . Радиус Земли

Решение

На спутник, движущийся по круговой орбите, действует сила тяжести , которая во много раз превосходит силы тяготения, действующие на него со стороны других небесных тел, поэтому по второму закону Ньютона . Здесь — масса спутника, его центростремительное ускорение. По закону всемирного тяготения . Здесь — гравитационная постоянная, — расстояние от спутника до центра Земли, т.е. радиус круговой орбиты спутника (), — масса Земли. Центростремительное ускорение спутника связано с линейной скоростью спутника соотношением или . Следовательно, получаем уравнение движения спутника на высоте : или

Эту формулу можно упростить следующим образом. На тело массой , находящееся на Земле, действует сила тяжести , равная по закону всемирного тяготения силе тяготения этого тела к Земле, поэтому или , откуда .

Таким образом, линейная скорость спутника равна ,

а угловая скорость

Задача №3

Шар массой движется со скоростью и сталкивается с покоящимся шаром массой и скоростью . Определить скорости шаров и после удара, если он абсолютно упругий, прямой, центральный.

Решение

Рассматриваемые в задаче оба шара образуют замкнутую систему и в случае упругого удара и импульс системы, и механическая (кинетическая) энергия сохраняется. Запишем оба закона сохранения (с учётом неподвижности второго шара до удара):

Таким образом, налетающий (первый) шар в результате удара уменьшил свою скорость с 1,05 м/с до 0,45 м/с, хотя и продолжил движение в прежнем направлении, а ранее неподвижный (второй) шар приобрёл скорость, равную 1,5 м/с и теперь оба шара движутся по одной прямой, и в одном направлении.

Задача №4

Баллон вместимостью наполнен азотом при температуре . Когда часть газа израсходовалась давление понизилось на . Определить массу израсходованного газа. Процесс считать изотермическим (при постоянной температуре).

Решение

Пусть — молярная масса азота;

— начальная и конечная масса газа; — расход газа.

— начальное и конечное давление газа в баллоне; — снижение давления газа;

— универсальная газовая постоянная.

Так как масса газа в баллоне меняется, то начальное и конечное состояния газа в баллоне нельзя связывать ни законом Бойля-Мариотта, ни законом Шарля.равнением газа в баллоне меняется, то начальное и конечное состояния газа в баллоне нельзя связывать законом Бойля-Мариотт Нужно для каждого состояния записать уравнение Менделеева-Клапейрона

, тогда

Задача №5

Вычислить плотность азота , находящегося в баллоне под давлением и имеющего температуру .

Решение

Пусть — молярная масса азота;

— универсальная газовая постоянная;

— давление газа в баллоне;

— температура газа в баллоне.

Запишем уравнение Менделеева-Клапейрона для текущего состояния газа (с учётом, что ):

.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита14:31:50 04 ноября 2021
.
.14:31:48 04 ноября 2021
.
.14:31:46 04 ноября 2021
.
.14:31:44 04 ноября 2021
.
.14:31:43 04 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Реферат: Найти пределы функций, не пользуясь правилом Лопиталя

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287589)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте