Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Математические последовательности Предел функции

Название: Математические последовательности Предел функции
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 11:08:03 22 декабря 2010 Похожие работы
Просмотров: 17 Комментариев: 18 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Задание 1

Вычислите и последовательности .

Решение.

Рассмотрим последовательность .

для любого натурального

Следовательно, множество является ограниченным сверху. Это означает, что последовательность имеет верхнюю точную грань: .

Следовательно, множество не является ограниченным снизу. Это означает, что нижняя грань последовательности не существует.

Ответ. не существует


Задание 2

Пользуясь определением предела последовательности, докажите, что .

Доказательство.

Число называется пределом последовательности , если для любого положительного числа существует номер такой, что при выполняется неравенство .

Используя определение предела последовательности, докажем, что .

Возьмем любое число .

Если взять , то для всех будет выполняться неравенство . Следовательно, .

Доказано


Задание 3

Пользуясь определением предела функции, докажите, что .

Доказательство

Число называется пределом функции при , если для любого числа существует число такое, что для всех , удовлетворяющих неравенству , выполняется неравенство .

Используя определение предела функции, докажем, что .

Возьмем любое .

Положим .

Если взять , то для всех , удовлетворяющих неравенству , выполняется неравенство . Следовательно, .

Доказано.


Задание 4

Вычислите предел .

Решение.

Ответ.

Задание 5

Вычислите предел .

Решение.

Ответ.


Задание 6

Вычислить предел .

Решение.

Ответ.

Задание 7

Вычислить предел .

Решение.

Ответ.

Задание 8

Вычислить предел .

Решение

Ответ.

Задание 9

Вычислить предел .

Решение.

Ответ.


Задание 10

Вычислить предел .

Решение.

Ответ.

Задание 11

Вычислить предел .

Решение.

Ответ.

Задание 12

Вычислить предел .

Решение.


Ответ.

Задание 13

Вычислить предел .

Решение.

Ответ.

Задание 14

Вычислить предел .

Решение.

при функция является бесконечно малой

для любого функция является ограниченной.

Известно, что произведение бесконечно малой функции и ограниченной функции есть бесконечно малая функция. Следовательно, функция является бесконечно малой при . Это означает, что .


Ответ.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита14:41:57 04 ноября 2021
.
.14:41:55 04 ноября 2021
.
.14:41:53 04 ноября 2021
.
.14:41:52 04 ноября 2021
.
.14:41:50 04 ноября 2021

Смотреть все комментарии (18)
Работы, похожие на Контрольная работа: Математические последовательности Предел функции

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287589)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте