Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Разработка системы кодированиядекодирования циклического кода

Название: Разработка системы кодированиядекодирования циклического кода
Раздел: Рефераты по коммуникации и связи
Тип: контрольная работа Добавлен 21:09:24 08 декабря 2010 Похожие работы
Просмотров: 33 Комментариев: 19 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра КТРС

РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ ПО ДИСЦИПЛИНЕ

«ОСНОВЫ ПЕРЕДАЧИ ДИСКРЕТНЫХ СООБЩЕНИЙ»

ВАРИАНТ № 10

Выполнил:

Проверил:

Студент Иванов И.И.

Преподаватель Синельников А.В.

Группа: РКС10-32

Новосибирск 2009


Общее задание

Разработать систему кодирования/декодирования циклического кода для -элементного первичного кода, который обнаруживает и исправляет ошибок. Оценить вероятность получения необнаруживаемой ошибки на выходе системы, если в канале связи меняется от до .

Исходные данные

Необходимые для решения задачи исходные данные выбираются по таблице 1 в соответствии с полученным вариантом.

Таблица 1

Исходные данные для вариантов расчетно-графической работы.

Вариант №

Количество элементов в коде

Количество исправляемых ошибок

Вариант №

Количество элементов в коде

Количество исправляемых ошибок

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

5

6

7

8

9

10

5

6

7

8

9

10

5

6

7

8

9

10

5

6

1

5

3

2

4

1

2

4

6

1

3

2

3

3

5

4

2

3

4

2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

7

8

9

5

6

7

8

6

7

5

5

6

7

6

9

8

10

5

5

8

4

3

1

5

1

2

5

6

1

3

5

2

4

6

3

4

2

4

5

3

Этапы выполнения работы

1. Определение числа проверочных элементов избыточного кода.

2. Выбор образующего многочлена для построения кода, указанного в задании.

3. Расчёт матрицы синдромов для однократной ошибки.

4. Построение функциональной схемы устройств кодирования-декодирования полученного кода.

5. Построение графика появления необнаруживаемой ошибки при заданном изменении вероятности ошибки в канале связи.

ЗАДАНИЕ ВАРИАНТА

Разработать систему кодирования/декодирования для k = 8-элементного первичного кода, когда код обнаруживает и исправляет tИ = 1-ошибку. Оценить вероятность обнаружения ошибки на выходе системы передачи, если вероятность ошибки в канале связи РОШ меняется от до .

РЕШЕНИЕ

Определение количества поверочных элементов r .

Исходя из того, что k = 8 и tИ = 1, решаем систему уравнений:

Откуда следует:

Составляем таблицу:

1

2

3

4

1

2

5

12

Откуда определяем: r = 4, n = k + r = 8 + 4 = 12.

Выбор образующего полинома

После определения проверочных разрядов r, выбираем образующий полином G(x) (многочлен) степени, равной r.

Образующий полином G(x) должен обладать некоторыми свойствами:

1) Остатки от деления должны быть все разные, т.е. его нельзя составить из степеней низших порядков, он неприводимый.

2) Число остатков у этого полинома должно быть равно количеству ошибок в коде, т.е. такие полиномы примитивные.

С помощью таблицы образующих полиномов можно найти необходимый полином. В приводимой таблице указаны некоторые свойства этих многочленов и соотношения между ними. Приводятся примитивные многочлены с минимальным числом ненулевых коэффициентов. Многочлены даны в восьмеричном представлении.

Двойственный многочлен неприводимого многочлена также неприводим, а двойственный многочлен примитивного многочлена примитивен. Поэтому каждый раз в таблице приводится либо сам многочлен, либо двойственный многочлен. Каждая запись в таблице, оканчивающаяся некоторой буквой, соответствует некоторому неразложимому многочлену указанной степени. Для степеней от 2 до 16 этими многочленами, а также двойственными к ним исчерпываются все неразложимые многочлены этих степеней.

Буквы, которые приведены после восьмеричного представления многочлена, дают о нем следующую информацию:

A , B , С, D Не примитивный

Е, F , G , Н Примитивный

A , B , Е, F Корни линейно зависимы

С, D , G , Н Корни линейно независимы

A , C , Е, G Корни двойственного многочлена линейно зависимы

B , D , F , Н Корни двойственного многочлена линейно независимы
Выписываем часть таблицы неприводимых полиномов:

Из таблицы выбираем полином (1 23F) и затем переводим из восьмеричного в двоичное представление:

Получили образующий полином:

G(x) = x4 + x + 1.

Проверка образующего полинома

1. Определяем необходимое кодовое расстояние:

2. Вычисляем: f(x) = xk -1 = x7 = 10000000

3. Находим: f(x)xr = x11 = 100000000000

4. Поделим f(x)xr на G(x):

x11 x4 + x + 1

x11 + x8 + x7 x7 + x4 + x3 + x

x8 + x7

x8 + x5 + x4

x7 + x5 + x4

x7 + x4 + x3

x5 + x3

x5 + x2 + x

x3 + x2 + x = r(x) = 1110

Полученный остаток от деления является комбинацией проверочных элементов:

r(x) = 1110

5. Записываем многочлен комбинации:

F(x) = f(z)xr + r(x) = 100000001110

Определяем вес многочлена (количество единиц в комбинации): V = 4.

6. Сравниваем V с d0 , поскольку выполняется условие: V ³ d0 , то выбранный полином подходит как образующий.

Построение матрицы синдромов для однократной ошибки

Для определения элементов матрицы синдромов будем вносить ошибку в кодовую комбинацию (F(x) = 100000001110) поочерёдно начиная со старшего разряда, затем делить на образующий полином, полученный остаток и будет одной из строк матрицы синдромов. Пусть ошибка произошла в самом старшем разряде, тогда она имеет вид 000000001110, т.е. деление такого числа на образующий полином и есть это число. Следовательно это синдром для ошибки в разряде а1. Определим синдромы для остальных разрядов.

для а2:

x10 x4 + x + 1

x10 + x7 + x6 x6 + x3 + x2 + 1

x7 + x6

x7 + x4 + x3

x6 + x4 + x3

x6 + x3 + x2

x4 + x2

x4 + x + 1

x2 + x + 1 = s(x) = 0111

для а3:

x9 x4 + x + 1

x9 + x6 + x5 x5 + x2 + x

x6 + x5

x6 + x3 + x2

x5 + x3 + x2

x5 + x2 + x

x3 + x = s(x) = 1010

для а4:

x8 x4 + x + 1

x8 + x5 + x4 x4 + x + 1

x5 + x4

x5 + x2 + x

x4 + x2 + x

x4 + x + 1

x2 + 1 = s(x) = 0101

для а5:

x7 x4 + x + 1

x7 + x4 + x3 x3 + 1

x4 + x3

x4 + x + 1

x3 + x + 1 = s(x) = 1011

для а6:

x6 x4 + x + 1

x6 + x3 + x2 x2

x3 + x2 = s(x) = 1100

для а7:

x5 x4 + x + 1

x5 + x2 + x x

x2 + x = s(x) = 0110

для а8:

x4 x4 + x + 1

x4 + x + 1 1

x + 1 = s(x) = 0011

Таким образом, матрица синдромов имеет вид:


Полученная матрица синдромов используется для алгоритма построения дешифратора ошибок разрабатываемого далее декодера.

Схема кодера циклического кода (12, 8)

Образующий полином G(x) можно представить в виде:

G(x) = g4 x4 + g3 x3 + g2 x2 + g1 x + g0 , где g4 = 1, g3 = 0, g2 = 0, g1 = 1, g0 = 1.

Тогда устройство кодирования имеет вид:

Рис.1. Схема устройства кодирования циклического кода (12, 8).


Принцип работы устройства:

В исходном состоянии ключ находится в положении 1, на вход устройства поступает первичная кодовая комбинация f(x) (начиная со старшего разряда). Через k-тактов вся первичная кодовая комбинация поступит на выход, а в результате деления (благодаря обратной связи) образуется остаток. Ключ переключается в положение 2. Таким образом, через n-тактов на выходе получим F(x).

Схема декодера циклического кода (12, 8).


Рис.2. Схема устройства декодирования циклического кода (12, 8).

Принцип работы устройства:

Исходная комбинация F(x) подается в буферный регистр и одновременно в декодирующий регистр. Если с приходом последнего символа, зафиксирован нулевой остаток (синдром 0000), то ошибок нет, если же не нулевой, то есть. Принятая комбинация подается через выходной сумматор, и искаженный сигнал исправляется.

Оценка вероятности обнаруживаемой ошибки на выходе системы передачи

Определим вероятность ошибочного приема кодовой комбинации в условиях биномиального распределения ошибок. При помехоустойчивом кодировании различают ошибки двух типов:

· Обнаруживаемые или исправляемые кодом.

· Необнаруживаемые ошибки.

Вероятности появления необнаруживаемых ошибок (в режиме исправления):

С помощью программы в среде МАТКАД производим расчеты и получаем графическую зависимость вероятности необнаруживаемых ошибок от вероятности ошибки элемента:


Рис.3. График зависимости вероятности не обнаруживаемой ошибки Рно на выходе системы передачи от вероятности ошибки в канале связи Рош .

Из графика видим, что с увеличением вероятности ошибки в канале вероятность обнаружения ошибки на выходе системы передачи также увеличивается.


ЛИТЕРАТУРА

1. Питерсон У., Уэлдон Э. Коды исправляющие ошибки. – М.: Мир, 1976г.

2. Мак-Вильямс Ф.Дж., Слоэн Н.Дж. Теория кодов, исправляющих ошибки. – М.: Радио и связь, 1979г.

3. Основы передачи дискретных сообщений: Учебник для вузов / Ю.П. Куликов, В.М. Пушкин, Г.И. Скворцов и др.: Под ред. В.М. Пушкина. – М.: Радио и связь, 1992.- 288 с., ил.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита19:46:03 04 ноября 2021
.
.19:46:01 04 ноября 2021
.
.19:45:59 04 ноября 2021
.
.19:45:57 04 ноября 2021
.
.19:45:55 04 ноября 2021

Смотреть все комментарии (19)
Работы, похожие на Контрольная работа: Разработка системы кодированиядекодирования циклического кода

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287672)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте