Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Системи лінійних диференціальних рівнянь із сталими коефіцієнтами Поняття про стійкість розв яз

Название: Системи лінійних диференціальних рівнянь із сталими коефіцієнтами Поняття про стійкість розв яз
Раздел: Рефераты по астрономии
Тип: реферат Добавлен 23:05:41 26 января 2011 Похожие работы
Просмотров: 8 Комментариев: 18 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ

КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ ТОРГОВЕЛЬНО-ЕКОНОМІЧНИЙ УНІВЕРСИТЕТ

КОЛОМИЙСЬКИЙ ЕКОНОМІКО -ПРАВОВИЙ КОЛЕДЖ

Реферат

З дисципліни Математика для економістів

на тему:

«Системи лінійних диференціальних рівнянь із сталими коефіцієнтами. Поняття про стійкість розв’язків»

Виконала: студентка групи

Б-13 Лавринович Ірина

Перевірив викладач: Лугова Л.Б.

Коломия-2002

План

1. Поняття про стійкість розв’язків.

Контрольні запитання:

1. Які функції описують незбурений розв’язок?

2. Який розв’язок системи називається стійким за Ляпуновим ?

3. При яких умовах розв’зок називають нестійким ?

4. Який розв’язок називають асимптотично стійким ?

5. Дано рівняння y + y = t з початковою умовою y(0) = 1. Дослідити розв’язок, що задовольняє цю умову, на стійкість.


При створенні приладів, конструкцій, машин, що відповідають певним умовам, треба знати, як поводитиметься об’єкт при невеликих перерозподілах сил зміні початкових умов. Той об’єкт, експлуатаційні параметри якого не реагують на ці зміни, називається стійким. Наприклад, при різних відхиленнях маятника від положення рівноваги ( різних початкових умовах ) рух маятника має бути стійким, періодичним. Крило літака має зберегти початкове положення навіть при найменшій зміні початкових умов.

Фізично задача про стійкість може бути поставлена так: розглядається деякий рух, що відповідає заданим початковим умовам. Змінимо початкові умови на малу величину. Якщо далі характер руху залишається попереднім чи зміниться мало, то такий рух називається стійким за Ляпуновим. У цьому тлумаченні стійкості залишалось невизначеним поняття “ мала величина”.

Підійдемо до питання більш строго. Рух кожного об’єкта описується системою диференціальних рівнянь першого порядку, записаних у нормальній формі:

Якщо об’єкт має один степінь вільності, то його рух описується системою:

нелінійною

;

лінійною

У системі (1.1) невідомими є функції часу в системах (1.2) і (1.3)­­­ – та Нехай функції визначені в n-вимірній кулі радіуса R: для і задовольняють там деякі умови, що гарантують існування неперервно диференційованих функцій

які є розв’язком системи (1.1). Доповнимо систему (1.1) початковими умовами. При існує набір чисел взятих з n-вимірної кулі що дає змогу тільки єдиним чином дістати Функції

при цьому переходять у єдину систему частинних розв’язків системи (1.1):


……………………………

Надалі треба буде змінювати початкові умови і відповідно частинні розв’язки. При цьому вважаємо, що ці зміни не виводять функції та початкові умови з області визначення правої частини рівняння (1.1). Дамо означення стійкості розв’язку системи (1.1). Нехай відомий частинний розв’язок системи (1.1). що відповідає початковим умовам при Змінимо початкові умови при Частинний розв’язок, що відповідає цим новим умовам, позначимо Функції описують так званий незбурений розв язок , а збурений розв’ язок .

Розв’язок системи (1.1) називається стійким за Ляпуновим , якщо для будь-якого заданого як завгодно малого додатного числа можна вказати таке мале додатне число що при

(1.4)

для всіх та справджується нерівність

(1.5)

Якщо при виконанні всіх умов (1.4) хоч для одного i=k не виконується умова (1.5), тобто то розв’язок називається нестійким . Якщо при виконанні умов (1.4), (1,5) виконано ще й умови

(1.6)

для всіх то розв’язок називається асимптотично стійким . Якщо серед рівностей (1.6) хоч би одна, наприклад для i=k, не виконана, але виконані всі умови (1.5), то розв’язок називається неасимптотично стійким. Якщо то йдеться про стійкість нульового розв’язку (точки спокою).Якщо для будь-якого як завгодно малого додатного числа >0 можна вказати таке мале додатне число яке залежить від що при

(1.7)

для всіх та виконуються нерівності

(1.8)

то нульовий розв’язок називається стійким за Ляпуновим. Якщо при виконанні (1.7) для всіх хоч би одна з умов (1.8) не виконується, то нульовий розв’язок називається нестійким.

Якщо при виконанні умов (1.7) та (1.8) виконуються ще й умови

(1.9)

для всіх то нульовий розв’язок називається асимптотично стійким.

Якщо говорити про стійкість при зміні силової дії, то зміна сил відбивається на зміні коефіцієнтів диференціальних рівнянь, що описують рух. Ті системи, розв’язок яких не змінюється при незначній зміні коефіцієнтів, називаються грубими. Грубі системи є стійкими.


Використана література:

1. Овчинников П.Ф., Лисицын Б. М., Михайленко В. М. Высшая математика. – К.: Вища шк., 1989. – 117-118 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита21:01:11 04 ноября 2021
.
.21:01:09 04 ноября 2021
.
.21:01:07 04 ноября 2021
.
.21:01:05 04 ноября 2021
.
.21:01:01 04 ноября 2021

Смотреть все комментарии (18)
Работы, похожие на Реферат: Системи лінійних диференціальних рівнянь із сталими коефіцієнтами Поняття про стійкість розв яз

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(290128)
Комментарии (4186)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте