БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
кафедра ЭТТ
РЕФЕРАТ на тему:
«
Основные характеристики пространственной структуры излучения
»
МИНСК, 2008
До сих пор при изложении вопросов обнаружения сигналов на фоне помех учитывалась только их временная структура. В то же время как сигналы, так и помехи являются электромагнитными полями, которые характеризуются амплитудными и фазовыми распределениями на раскрыве передающей или приемной антенны, где x,y - координаты раскрыва.
Под пространством сигнала будем понимать для определенности плоскость (x,y). На плоскости (x,y) в пределах площадисуществует поле f(x,y,t), а внеполе равно нулю (рис. 2.9.1)
где A(x,y,t) и - амплитуда и фаза поля.
Пусть пространственный сигнал f(x,y) представляет распределение на плоскости Z = 0, т.е. на плоскости (x,y), амплитуд и фаз поля монохроматического колебания
,
где - амплитуда, круговая частота и начальная фаза монохроматического колебания.
При этом поле в полусфере бесконечного радиуса при Z > 0,
опирающейся на плоскости Z = 0, является суммой плоских волн с различными амплитудами, фазами и направлениями распространения:
Рис. 1. Пространство сигнала.
Рис. 2. Проекции волнового вектора на координатные оси.
где - радиус-вектор, проведенный из начала координат в точку наблюдения;
- волновой вектор, модуль которого
;
- проекция волнового вектора;
- комплексная функция, которая описывает амплитуду и фазу отдельной плоской волны с направлением распространения, определяемым совокупностью двух действительных переменных и .
Заметим, что факт распространения плоской волны в любом направлении отражается условием сохранения фазы волнового фронта, распространяющегося со скоростью света С :
, если
.
Факт суммирования плоских волн, распространяющихся во всех направлениях передней полусферы, отражается их двойным интегрированием по всем направлениям.
Направление распространения волна определяется проекциями волнового вектора на координатные оси (рис.2). В общем случае направление распространения волны определяется двумя углами и . Если эти углы выбраны по отношению к прямоугольной системе координат x, y, z так, как показано на рис. 2, то
,
.
Так как три проекции волнового вектора связаны соотношением , то независимых проекций всего две - и , а третья проекция
.
Используя введенные обозначения, перепишем выражение для искомого поля так
Определим комплексную функцию . Очевидно, что приведенное решение волнового уравнения должно удовлетворять следующему условию – на плоскости Z=0 это решение должно иметь вид заданного пространственного сигнала
Полученное выражение представляет собой обратное двумерное преобразование Фурье. Прямое двумерное преобразование Фурье позволяет найти функцию :
.
Функция , определяющая распределение амплитуд и фаз плоских волн по направлениям согласно последнему выражению может быть названа спектром волнового поля или угловым спектром поля. Название “угловой спектр” отражает связь аргументов и с углами распространения и соответствующих плоских волн.
Последние два соотношения представляют собой прямое и обратное преобразование Фурье для двух переменных - и (x, y). Переменные x, y являются координатами точек пространства и имеют размерность длины. Переменные и имеют размерность, обратную длине. Эти переменные называются пространственными частотами. Такое название вполне оправдано. Параметр x или у в пространственном сигнале подобен времени t во временном сигнале, а параметр или подобен круговой частоте в спектре временного сигнала. Поэтому оправданным является и другое обозначение переменных и как круговых пространственных частот
,
.
Таким образом, переменные и имеют двойной физический смысл – это, с одной стороны, пространственные частоты, а с другой стороны, величины, определяющие углы распространения плоских волн, на которые разлагается волновое поле.
Решение волнового уравнения остается двузначным, так как можно выбрать любой из двух знаков перед координатой z в показателе экспоненты. Эта неопределенность знака устраняется, если учесть поведение неоднородных волн при увеличении z.
В отличие от распространяющихся плоских волн при
неоднородные волны получаются при
,
которые экспоненциально затухают вдоль координаты z. При этом убывающее с ростом z поле мы получим только в том случае, если выберем в указанном показателе экспоненты перед z знак ''+". С учетом этого решение волнового уравнения, определяющее комплексную амплитуду поля в передней полусфере в виде суперпозиции плоских волн различных направлений (в том числе и неоднородных) с различными амплитудами и фазами, обретает окончательный вид
Заметим, что решение волнового уравнения является отражением двух базовых явлений: явления дифракции радиоволн, т.е. отклонения направления распространения радиоволн от нормали к излучающему раскрыву, и явления интерференции радиоволн, т.е. сложения (суперпозиции) плоских радиоволн с различными амплитудами, фазами и направлениями распространения.
Сомножитель подынтегральном выражении доопределяет фазу каждой составляющей углового спектра поля с учетом того, что сигнал в передней полусфере наблюдается на плоскости, перпендикулярной оси z на расстоянии z от плоскости входного пространственного сигнала. Поэтому этот сомножитель условно может рассматриваться как частотная характеристика свободного пространства
.
Амплитудно-частотная характеристика свободного пространства для распространяющихся в передней полусфере радиоволн равна единице
, , ,
где - координаты волнового вектора в полярной системе координат (рис. 2.9.2):
,
,
- угол между направлением распространения плоской радиоволны и осью z, т.е. угол отклонения (дифракции) электромагнитных волн от направления, перпендикулярного плоскости пространственного сигнала.
Фазочастотная характеристика свободного пространства
изображена на рис. 3.
Поведение фазочастотной характеристики свободного пространства представляет наибольший интерес в диапазоне пространственных частот, равной ширине амплитудно-частотного спектра пространственного сигнала, которая по аналогии с шириной спектра временного сигнала определяется пространством сигнала :
, ,
,
где - обобщенный линейный размер пространства сигнала.
Это означает, что поведение фазочастотной характеристики свободного пространства представляет интерес в диапазоне углов дифракции:
.
Учитывая это, фазочастотная характеристика свободного пространства может приближенно рассматриваться в различных условиях дифракции:
1) в условиях приближения геометрической оптики изменением ФЧХ свободного пространства в диапазоне углов дифракции можно пренебречь
Рис. 3. Фазочастотная характеристика свободного пространства.
Рис. 4. Диаграмма направленности антенны при равномерном АФР.
,
если второе (отброшенное) слагаемое разложения в ряд Маклорена много меньше радиан
,
что выполняется в области глубокой ближней зоны
.
2) в условиях дифракции Френеля фазочастотную характеристику свободного пространства в диапазоне углов дифракции можно аппроксимировать параболой
,
если третье (отброшенное) слагаемое разложения в ряд Маклорена много меньше радиан
,
что выполняется на расстояниях
т.е. практически в области ближней зоны
.
3) в условиях дифракции Фраунгофера, когда изменение фазочастотной характеристики свободного пространства в диапазоне углов рефракции больше радиан
т.е. практически в области дальней зоны
.
При этом решение дифракционной задачи упрощается в большей мере, чем даже в частных случаях дифракции Френеля или приближения геометрической оптики. Действительно, поле в дальней зоне, используя полярную систему координат
,
,
,
можно представить в следующем виде:
.
Учитывая ограниченную область изменения пространственной частоты , относительно малые размеры пространства сигнала , относительно небольшой диапазон изменения углов дифракции , можно вычислить интеграл путем ряда уточнений, преобразований переменной интегрирования упрощений:
- уточнение пределов интегрирования
,
- упрощение подынтегрального выражения
, ,
- переход к переменной интегрирования , а от нее – к переменной
Дальнейшее вычисление интеграла основано на использовании относительно медленного изменения функции по сравнению с изменением функций и в дальней зоне . Это позволяет вынести за знак интеграла функцию :
.
Осуществляя замену переменной интегрирования
,
приводим выражение в интегралах Френеля
.
Учитывая асимптотические свойства интегралов Френеля,
,
находим окончательно:
.
Возвращаясь к двумерному интегралу, определяющему поле в дальней зоне источника излучения (в плоскости ), с точностью до несущественного постоянного фазового сдвига, получаем
.
Таким образом, в дальней зоне (зоне Фраунгофера) распределение поля определяется формой спектра исходного поля. Этот результат широко известен в теории антенн, где распределение поля по углам в дальней зоне (диаграмма направленности антенны) есть преобразование Фурье от распределения в раскрыве антенны.
При регулярном АФР поля в плоскости излучения диаграмма направленности характеризуется наличием главного лепестка определенной формы и ширины,а также наличием боковых лепестков определенного уровня. Так, например, при равномерном распределении (АФР) поля на раскрыве
, , ,
диаграмма направленности излучения имеет форму в обеих плоскостях:
Угловая ширина диаграммы направленности антенны пропорциональна ширине спектра пространственного сигнала
,
.
Таким образом, диаграмма направленности антенны и ее ширина (рис. 4) является важнейшими пространственными характеристиками излученного (зондирующего) сигнала, определяющими направленность излучения антенной системы с регулярным амплитудно-фазовым распределением поля на ее разрыве.
ЛИТЕРАТУРА
1. Охрименко А.Е. Основы извлечения, обработки и передачи информации. (В 6 частях). Минск, БГУИР, 2004.
2. Девятков Н.Д., Голант М.Б., Реброва Т.Б.. Радиоэлектроника и медицина. –Мн. – Радиоэлектроника, 2002.
3. Медицинская техника, М., Медицина 1996-2000 г.
4. Сиверс А.П. Проектирование радиоприемных устройств, М., Радио и связь, 2006.
5. Чердынцев В.В. Радиотехнические системы. – Мн.: Высшая школа, 2002.
6. Радиотехника и электроника. Межведоств. темат. научн. сборник. Вып. 22, Минск, БГУИР, 2004.
|