Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Контрольная по теории вероятности

Название: Контрольная по теории вероятности
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:22:15 24 августа 2006 Похожие работы
Просмотров: 122 Комментариев: 21 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВОРОНЕЖСКИЙ ИНСТИТУТ ВЫСОКИХ ТЕХНОЛОГИЙ

Факультет заочного и послевузовского обучения

КОНТРОЛЬНАЯ РАБОТА №1

По дисциплине: "Теория вероятностей и элементы математической статистики"

Воронеж 200 4 г.

Вариант – 9.

Задача № 1.

№№ 1-20. Техническое устройство, состоящее из трех узлов, работало в течение некоторого времени t. За это время первый узел оказывается неисправным с вероятностью р1 , второй – с вероятностью р2 , третий – с вероятностью р3 . Найти вероятность того, что за время работы: а) все узлы оставались исправными; б) все узлы вышли из строя; в) только один узел стал неисправным; г) хотя бы один узел стал неисправным (см. исходные данные в таблице).

p­ ­1 =0,4 p2 =0,6 p3 =0,9

Решение:

Пусть событие А означает, что первый узел оказался неисправным, В оказался неисправным второй узел и С – оказался неисправным третий узел, тогда - первый узел был исправен в промежуток времени t , - был исправен второй узел, - был исправен третий узел.

а) Пусть событие D означает, что все узлы оставались исправными, тогда . Поэтому , учитывая независимость событий , и , по теореме умножения вероятностей имеем:

б) Пусть событие Е – все узлы вышли из строя, тогда:

в) Пусть событие F – только один узел стал неисправным, тогда:

События несовместные. Поэтому, применяя теорему сложения вероятностей несовместимых событий, получим:

г) Пусть событие D1 – хотя бы один узел стал неисправным, тогда:

.

Задача № 2

№39. По линии связи могут быть переданы символы А, В, С. Вероятность передачи символа А равна 0,5; символа В – 0,3; символа С – 0,2. Вероятности искажения при передаче символов А, В, С равны соответственно 0,01; 0,03; 0,07. Установлено, что сигнал из двух символов принят без искажения. Чему равна вероятность, что передавался сигнал АВ?

Решение:

Пусть событие А – передача символа А, событие В – передача символа В, событие С – передача символа С, событие - искажение при передаче символа А, событие и - искажения при передаче символов В и С соответственно.

По условию вероятности этих событий равны:

, , , ,

Если события , и - искажения при передаче символов, то события , и - отсутствие искажений при передаче. Их вероятности:

Обозначим через D событие, состоящее в том, что были переданы два символа без искажений.

Можно выдвинуть следующие гипотезы:

Н1 – переданы символы АА,

Н2 – символы АВ,

Н3 – символы ВА,

Н4 – символы АС,

Н5 – символы СА,

Н6 – символы ВВ,

Н7 – символы ВС,

Н8 – символы СВ,

Н9 – символы СС.

Вероятности этих гипотез:

Условные вероятности события D если имела место одна из гипотез будут:

По формуле Бейеса вычислим условную вероятность с учетом появления события Р :

Задача № 3

№№ 41-60. Найти вероятность того, что в п независимых испытаниях событие появится: а) ровно k раз; б) не менее k раз; в) не более k раз; г) хотя бы один раз, если в каждом испытании вероятность появления этого события равна р (см. исходные данные в таблице).

n=5 k=4 p=0,8

Решение:

Так как число испытаний невелико, то для вычисления искомой вероятности воспользуемся формулой Бернулли:

, где

число сочетаний из п элементов по k , q=1- p . В рассматриваемом случае:

а) вероятность появления события ровно 4 раза в 5 испытаниях:

б) вероятность появления события не менее 4 раз в 5 испытаниях:

в) вероятность появления события не более 4 раз в 5 испытаниях:

г) вероятность появления события хотя бы один раз в 5 испытаниях:

Задача № 4

№№ 61-80. Дана плотность распределения f( x) случайной величины Х. Найти параметр а, функцию распределения случайной величины, математическое ожидание М[Х], дисперсию D[ X], вероятность выполнения неравенства х1 < x< x2 , построить график функции распределения F( x).

Решение:

Для определения параметра а воспользуемся основным свойством плотности распределения:

, так как при плотность распределения равна нулю, то интеграл примет вид: или , откуда

;

Функция распределения связана с функцией плотности соотношением:

Откуда получим:

Математическое ожидание и дисперсию определим по формулам:

Вероятность выполнения неравенства <x< определим по формуле: Р( < x< )= F( ) – F( )=

Задача №5

№№ 81-100. Найти вероятность попадания в заданный интервал нормально распределенной случайной величины, если известны ее математическое ожидание а и среднее квадратическое отклонение (см. исходные данные в таблице).

a = 10 b = 22 a = 8 s = 6

Решение:

Для определения искомой вероятности воспользуемся формулой:

Здесь - функция Ломпаса, значения которой определяются по таблице. Учитывая, что функция Ф(х) нечетная, получим:

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита21:49:08 04 ноября 2021
.
.21:49:06 04 ноября 2021
.
.21:49:05 04 ноября 2021
.
.21:49:04 04 ноября 2021
.
.21:49:02 04 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Реферат: Контрольная по теории вероятности

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287511)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте