Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Вакансионное Распухание

Название: Вакансионное Распухание
Раздел: Остальные рефераты
Тип: реферат Добавлен 14:46:05 21 августа 2005 Похожие работы
Просмотров: 104 Комментариев: 17 Оценило: 4 человек Средний балл: 5 Оценка: неизвестно     Скачать

Вакансионное распухание.

1. Уравнения концентрации точечных дефектов.

Основу теоретических моделей распухания составляют кинетические уравнения концентрации точечных дефектов среды, содержащей стоки. При этом предполагается, что концентрация радиационных точечных дефектов при характерных температурах распухания (0,2-0,6) Тпл превосходит концентрацию термически равновесных дефектов. Вакансии и межузельные атомы, мигрируя по решетке, могут: во-первых, рекомбинировать; во-вторых, образовывать скопления одноименных дефектов и, в-третьих, уходить на стоки, в качестве которых служат сетка дислокаций, дислокационные петли, поры и другие протяженные дефекты. Следовательно, скорость изменения концентрации межузельных атомов и вакансий равна разности скоростей их образования и гибели, что может быть описано кинетическими уравнениями

(1)-(2)

где Сv., С i - усредненные концентрации вакансий и межузельных атомов;

к -скорость образования пар Френкеля; W - атомный объем; Ns -число стоков типа S в единице объема; I sv и Isi -число вакансий и межузель­ных атомов, приходящих в единицу времени на сток типа S ; ap -коэффици­ент взаимной рекомбинации точечных дефектов. Для нахождения входящих в (1), (2) величин I sv , I si решается диффузионная задача миграции точечных дефектов в упругом поле, создаваемом стоком типа S , а для этого необходимо знать энергию взаимодействия точечных дефектов со стоками. Считается, что точечные дефекты в первом приближении с порами не взаимо­действуют. С дислокациями они взаимодействуют по нескольким механиз­мам, наиболее важными из которых являются размерное взаимодействие и модульный эффект.

2. Поток точечных дефектов на дислокацию

Размерное взаимодействие, как известно, дает наибольший вклад в полную энергию взаимодействия между дислокацией и точечным дефектом. Оно имеет упругую природу и фактически является взаимодействием дальнодействующего поля напряжения дислокации с полем атомных смещений вокруг точечного дефекта. Для краевой прямолинейной дислокации, направ­ленной вдоль оси z :

(3)

где r - расстояние дефекта от дислокации; DVa - релаксационный объем, разница между объемом дефекта и атомным объемом; n - коэффициент Пуассона.

Если все дислокации параллельны друг другу и плотность их r , то область влияния каждой из них ограничена цилиндрической поверхно­стью радиуса

(4)

Концентрация радиационных точечных дефектов в пространстве между дис­локациями (стоками) будет отличаться от таковой на границах стоков. Соот­ветствующий градиент концентрации С a вызовет поток точечных дефектов

(5)

где D a , C a коэффициент диффузии и атомная концентрация точечных дефек­тов соответственно. Так как диффундирующие частицы взаимодействуют со своими стоками, в (5) необходимо добавить член, учитывающий действие дополнительной силы (3), Эта сила приводит к направленному потоку то­чечных дефектов (дрейфовому потоку) даже в отсутствие градиента концен­трации. Таким образом, уравнение диффузии примет вид

(6)

где индекс a означает или межузельные атомы i , или вакансии v . В уста­новившемся режиме, характеризуемом стационарными потоками точечных дефектов, дивергенция потока div J a =0 и уравнение (6) перепишется:

(7)

Здесь учтено, что Евз . является гармонической функцией, т.е. справедливо соотношение Ñ 2 E a вз =0.

Для решения (7) зададимся граничными условиями. Считаем дисло­кацию идеальным стоком для точечных дефектов, а потому у ядра дислока­ции (r = r0 ) поддерживается концентрация

(8)

где C a -термически равновесная концентрация точечных дефектов.

Другое граничное условие получим, считая, что среднее расстояние между дислокациями достаточно велико, поэтому влиянием поля дислокации на расстояние R от ядра дислокации можно пренебречь (E a вз =0 ). Тогда

(9)

где Собл a средняя концентрация точечных дефектов, создаваемых облучени­ем. Решение уравнения (7) с граничными условиями (8) и (9) имеет вид

(10)-(11)-(12)

Число точечных дефектов, достигающих единицы длины дислокации за единицу времени

(13)

Величину J a ( r 0 , q ) получим из уравнения (6), подставив в него (8) и (3). Интегрирование по q в (13) дает:

(14)

где Z a - параметр эффективности поглощения дислокацией точечного де­фекта a:

(15)

Для плотности дислокаций ~1014 м-2 , характерной для облучаемых материалов, расстояние R d ~ 100 В, L a ~10 b < Rd , но L a > r 0 . С учетом данных неравенств и разложения функций K 0 и J 0 , при малых и боль­ших аргументах выражение (15) упрощается:

(16)

Видно, что Z a зависит от типа дефекта через D V a .

Расчеты показывают, что и D Vi >| D Vi | .Тогда Li > Lv и, следователь­но, Zi > Zv . Согласно (14) это приводит к тому, что дислокации погло­щают преимущественно межузельные атомы, по сравнению с вакансиями. В качестве меры такого предпочтения (преференса) вводится величина

(17)

3. Поток точечных дефектов на пору

Поток рассчитывается таким же способом, как и на дислокацию. В простейшем случае, если объем облучаемого образца равномерно заполнен порами среднего радиуса rh и плотностью r h , на каждую пору приходится часть объема образца:

4/3 p R 3 h = r -1 h

(18)

Предполагается, что в сферической области радиусаRh других стоков , кроме поры, нет, и поэтому все точечные радиационные дефекты поглощаются порой.

Уравнение диффузии (7) для случая поры выглядит проще, чем для дислокации, так как не содержит дрейфового члена

(19)

Граничные условия можно записать:

(20)-(21)

где С th a -термическая концентрация точечных дефектов на поверхности поры;

С t a -термически равновесная концентрация точечных дефектов. Знаки "плюс" и "минус" отвечают вакансиям и межузельным атомам соответст­венно.

Решением уравнения (19) является

(22)

Тогда число точечных дефектов, достигающих поверхности поры Sh в единицу времени, будет:

(23)

По аналогии с (14) получается, что 4 p rh -эффективность погло­щения межузельных атомов и вакансий отдельной сферической порой радиуса rh . Таким образом, видно, что поры являются нейтральными стоками, т.е. поглощают за единицу времени одинаковое число межузельных атомов и ва­кансий.

Используя (23), можно найти скорость изменения объема поры или ее радиуса:

(24)

Первое слагаемое в правой части (24) характеризует скорость присоединения вакансий, второе - межузельных атомов, третье - скорость термического испарения вакансий из поры; g - коэффициент поверхностного натяжения поры : P давление газа в поре. При выводе (24) термически равновесную концентрацию межузельных атомов считали равной нулю. Из (24) следует, что рост вакансионной поры может происходить лишь тогда, когда правая часть положительна, т.е. при некотором критическом размере поры.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
15:00:21 10 сентября 2021
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya09:19:17 17 августа 2019
.
.09:19:16 17 августа 2019
.
.09:19:16 17 августа 2019
.
.09:19:15 17 августа 2019

Смотреть все комментарии (17)
Работы, похожие на Реферат: Вакансионное Распухание

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286347)
Комментарии (4153)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте