Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Лабораторная работа: Оценка точности и надежности результатов измерений

Название: Оценка точности и надежности результатов измерений
Раздел: Рефераты по математике
Тип: лабораторная работа Добавлен 09:11:49 13 мая 2011 Похожие работы
Просмотров: 140 Комментариев: 21 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

ОЦЕНКА ТОЧНОСТИ И НАДЕЖНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Цель работы: по данным результатов измерений найти предварительные значения показателей вариации, оценить пределы возможных ошибок и после исключения ошибочных результатов найти точные показатели вариации, определить величину доверительных интервалов для заданных значений доверительных вероятностей. Сделать выводы.

Исходные данные: варианты заданий приведены в таблице 2.

При проведении измерений, опытов, экспериментов возникают ошибки двух видов: систематические и случайные.

Систематические ошибки связаны с погрешностями измерительных приборов при измерениях.

Случайные ошибки не связаны с измерениями и обусловлены случайными внешними причинами (сбои, отказы аппаратуры, скачки напряжений в сети питания, сейсмические сотрясения, отвлечение внимания оператора, описки в записях и мн. др.)

При однократном измерении ошибка может быть обнаружена только путем логического анализа или сопоставлением результата с априорным представлением о нем. Установив и устранив причину ошибки, измерение можно повторить.

При многократном измерении одной и той же величины ошибки проявляются в том, что результаты отдельных измерений значительно отличаются от остальных. Иногда это отличие настолько большое, что ошибка очевидна, поэтому данный результат можно отбросить как заведомо неверный. Если отличие небольшое, то оно может быть следствием как ошибки, так и рассеяния отсчета. Определить возможность исключения сомнительного результата измерения позволяет «правило трех сигм», которое гласит:

если при многократном измерении одной и той же величины постоянного размера сомнительное значение результата отличается от среднего значения хср больше, чем на 3σ, то с вероятностью 0,997 оно является ошибочным и его следует отбросить.

При построении вариационных рядов каждый вариант или интервал имеет определенную частость, которая при большом количестве измерений стремится к вероятности попадания значения в данный интервал.

Одной из наиболее распространенных форм распределения случайной величины является нормальное распределение (распределение Гаусса).

С ним приходится сталкиваться при анализе производственных погрешностей, контроле технологических процессов и режимов и т.д.

Если весь массив экспериментальных данных подчиняется закону нормального распределения, то все значения измеряемой величины должны группироваться вокруг среднего значения, и выпадение какого-либо отдельного значения результата из этого массива позволяет предположить, что он ошибочный.

Чтобы дать представление о точности и надежности оценки результата пользуются доверительными интервалами и доверительными вероятностями.

Доверительный интервал определяет, на какую величину может отличаться отдельное значение результата измерения при нормальном распределении от своего среднего значения.

Неравенство

P(хср – ε < x0 < хср +ε) (1)

означает, что с вероятностью P значение измеряемого параметра x0 попадает в интервал

Ip = (хср - ε, хср + ε)


Например, известно, что с вероятностью P = 0,5 измеряемое значение при нормальном распределении попадет в интервал

ср ± σ);

с P = 0,68 в интервал (хср ± σ)

с P = 0,95 в интервал (хср ± 2σ)

с P = 0,99 в интервал (хср ± 2,6σ)

с P = 0,997 в интервал (хср ± 3σ)

Эта вероятность называется доверительной вероятностью, а интервал – доверительным интервалом.

Доверительный интервал измеряемого параметра x0 приближенно находится по формуле

(2)

где tр определяет число средних квадратичных отклонений, которое нужно отложить вправо и влево от центра рассеивания для того, чтобы вероятность попадания x0 в полученный интервал была равна P;

n – общее количество измерений.

При выборе доверительной вероятности необходимо учитывать ответственность поставленной задачи: чем более ответственна задача, тем с большей доверительной вероятностью (надежностью) должны быть оценены полученные параметры статистического анализа. Обычно для технических расчетов их принимают равными от 0,90 до 0,99, т.е. от 90 до 99%.

доверительный вероятность интервал вариация


Порядок выполнения работы

1. По данным пробной выборки рассчитываем предварительные значения показателей вариации

размах вариации

R = Xmax – Xmin . (3)

Средняя арифметическая

(4)

Дисперсия может быть рассчитана по ранее изученной формуле или по упрощенной формуле, наиболее часто применяемой на практике

(5)

Среднеквадратическая погрешность

(5)

Коэффициент вариации

(6)


2. Определяем пределы возможных ошибок. Для этого используем правило «трех сигм». Интервал нахождения истинных значений будет равен

(7)

Найти в ряду значения, которые не попадают в полученный интервал. Эти значения и являются ошибочными, поэтому должны быть отброшены.

3. После удаления из ряда измерений случайных величин производим пересчет показателей вариации. По правилу «трех сигм» определяем пределы возможных ошибок

4. Повторяем п. 3) до тех пор, пока не исключим все ошибки. т.е. все значения будут находиться в интервале (7)

5. После исключения случайных ошибок для каждой заданной доверительной вероятности находим доверительный интервал по формуле

(8)

Параметр tp следует определять по табл. 1 в зависимости от величины заданной доверительной вероятности.

Таблица 1 - Значения коэффициента доверия

p

tp

p

tp

p

tp

0,80

1,282

0,88

1,554

0,96

2,053

0,81

1,310

0,89

1,597

0,97

2,169

0,82

1,340

0,90

1,643

0,98

2,325

0,83

1,371

0,91

1,694

0,99

2,576

0,84

1,404

0,92

1,750

0,995

2,807

0,85

1,439

0,93

1,810

0,997

3,290

0,86

1,475

0,94

1,880

0,87

1,513

0,95

1,960


6. Сделать выводы

– какие значения массива экспериментальных данных являются случайными ошибками, и с помощью какого правила определялось наличие ошибок;

– как изменяются показатели вариации после исключения случайных ошибок;

– как изменяется доверительный интервал при изменении доверительной вероятности.

Исходные данные для выполнения задания

Вариант

Задание

1

8,5 7,7 8,4 7,3 8,4 8,4 8,3 7,6 8,7 8,4 8,4 6,1 6,2 7,3 8,4 8,3 7,8 8,3 7,5 2,1 11,2 18,1 8,2 8,7 9,9

Доверительные вероятности: p1 =0,85 p2 =0,95 p3 =0,995

2

22 24 28 22 24 24 24 33 24 25 24 25 24 24 25 27 26 24 25 25 27 12 34

Доверительные вероятности: p1 =0,8 p2 =0,9 p3 =0,99.

3

1,3 1,2 1,2 0,9 0,9 0,8 1,2 1,1 1,2 1,5 0,3 1,2 1,3 1,2 1,2 1,2 1,1 1,2 1,2 1,1 2,1 1,2 1,3

Доверительные вероятности: p1 =0,88 p2 =0,98 p3 =0,997.

4

40 45 44 45 35 46 47 48 43 50 45 47 38 45 44 73 41 44 40 46 44 15 43

Доверительные вероятности: p1 =0,85 p2 =0,99 p3 =0,997.

5

2 11 10 10 9 10 11 10 9 10 10 10 11 10 9 10 11 10 10 11 10 11 19

Доверительные вероятности: p1 =0,8 p2 =0,85 p3 =0,95.

6

8,5 8,3 8,4 8,4 8,4 8,4 8,3 8,5 8,6 8,4 1,8 8,4 8,4 7,4 6,2 8,4 8,4 8,3 14,7 8,3 8,3 8,4 8,3

Доверительные вероятности: p1 =0,95 p2 =0,99 p3 =0,997.

7

8,5 7,7 8,4 1,1 8,4 8,3 7,6 8,7 8,4 7,2 8,4 8,4 6,1 14,5 8,4 8,4 8,3 7,8 8,3 7,5 8,3 7,7 8,8

Доверительные вероятности: p1 =0,86 p2 =0,95 p3 =0,995.

8

8,5 4,2 8,4 8,3 8,4 8,4 8,3 8,6 8,7 8,4 8,2 8,4 8,4 12,3 9,2 8,3 8,4 8,3 8,4 8,3 8,8 8,8 8,5 8,9

Доверительные вероятности: p1 =0,85 p2 =0,99 p3 =0,997.

9

12,5 12,8 13,3 12,8 12,7 13,1 12,6 12,9 13 13,8 14,6 12,9 13 13,1 13,3 12,9 13,3 11,4 12,8 2,1 12,2 22,4 13,3 7,8

Доверительные вероятности: p1 =0,95 p2 =0,99 p3 =0,997.

10

22 24 22 29 24 24 24 24 41 24 25 24 25 24 25 24 25 22 26 24 25 25 8 24

Доверительные вероятности: p1 =0,8 p2 =0,85 p3 =0,9.

11

1,3 1,2 1,1 1,3 1,3 2,4 1,2 1,3 1,2 1,4 0,1 1,2 1,3 1,1 1,2 1,1 1,2 1,3 1,2 1,2 1,2 1,3 1,2 1,2

Доверительные вероятности: p1 =0,83 p2 =0,88 p3 =0,92.

12

2,3 2,2 2,1 2,2 3,8 1,8 2,20 2,2 2,2 2,3 0,8 2,2 2,3 2,2 2,3 2,2 2,3 2,2 2,4 2,5 2,5 2,2 2,3 2,8

Доверительные вероятности: p1 =0,8 p2 =0,9 p3 =0,99.

13

5,3 5,2 5 5,1 4,8 8,8 5,20 5,5 5,2 5,3 5,2 5,5 5,1 5,2 5,3 5,2 2,1 5,5 5,2 5,2 5,5 5,5 5,2 5,3

Доверительные вероятности: p1 =0,9 p2 =0,99 p3 =0,997.

14

10,3 10,2 13,3 10,9 10,9 10,8 10,20 10,1 10,2 10,5 10,2 10,3 10,2 10,2 10,1 10,2 10,2 10,1 10,1 10,2 10,3 7,1 10,4

Доверительные вероятности: p1 =0,8 p2 =0,92 p3 =0,98.

15

23 25 26 21 24 25 23,00 35 24 25 24 25 24 22 25 27 26 22 25 25 21 23 27 11 26 22

Доверительные вероятности: p1 =0,83 p2 =0,88 p3 =0,99.

16

11 12 10 12 10 11 13 22 12 11 14 11 11 13 11 13 14 13 12 10 12 11 12 11 2 17 12

Доверительные вероятности: p1 =0,85 p2 =0,91 p3 =0,98.

17

12 13,8 13,1 11,8 10,7 11,1 12,20 12,1 13,6 12,8 21,1 10,9 13,1 13,3 13,8 11,9 13,3 3,5 11,1 12,3 11 11,3 12,1 11,9

Доверительные вероятности: p1 =0,82 p2 =0,9 p3 =0,96.

18

2,1 2,3 2 2,2 2,5 2,3 2,10 2,3 2,2 2,1 2,3 5,2 2,5 2,1 2,1 2,2 2,2 2,2 2,2 2,2 1,9 5,1 2,1 2,3

Доверительные вероятности: p1 =0,81 p2 =0,91 p3 =0,997.

19

1,1 1,3 1,2 0,95 0,99 1,3 1,10 1,4 1,1 1,7 0,1 1,5 1,2 1,2 1,1 1,2 1,3 1,2 1,2 1,1 1,15 1,2 1,5 2,2

Доверительные вероятности: p1 =0,89 p2 =0,95 p3 =0,97.

20

22,5 22,8 23,3 22,8 22,7 11,5 22,60 22,9 23,1 23,8 24,6 22,9 23 23,1 22,9 23,3 35,5 23,1 25,5 27,1 23,1 22,1 22,3 23,3

Доверительные вероятности: p1 =0,92 p2 =0,98 p3 =0,995.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита01:19:11 05 ноября 2021
.
.01:19:09 05 ноября 2021
.
.01:19:08 05 ноября 2021
.
.01:19:06 05 ноября 2021
.
.01:19:05 05 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Лабораторная работа: Оценка точности и надежности результатов измерений

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287439)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте