Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Сходимость рядов

Название: Сходимость рядов
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 12:16:08 16 декабря 2010 Похожие работы
Просмотров: 68 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

КОНТРОЛЬНАЯ РАБОТА № 9

ВАРИАНТ 9.3.


Найти область сходимости указанных рядов

9.3.1.

а)

По признаку Лейбница для знакопеременных рядов ряд сходится условно (соответствующий ряд Дирихле расходиться)

.

б)

Отсюда следует, что при ряд сходится, т.е. при . При ряд расходится.

Рассмотрим случай

Для данного ряда выполняется теорема Лейбница для знакопеременных рядов Ряд сходится условно, т.к. ряд

При аналогично получим ряд , ряд сходится условно.

Ответ:

9.3.2.

а)

. По признаку Даламбера ряд сходится, если .

Ряд будет сходится при

Первый случай или

В промежутке ряд сходится.

Второй случай

В промежутке 1<x<l ряд сходится. Объединяем интервалы и получим . Рассмотрим концы интервала.

При x=1 получим ряд , т.е. ряд вида — -1+1-1+1-1+…

Данный ряд расходится, т.к. его сумма имеет два различных предела (колеблющийся ряд).

При получим ряд т.е. ряд вида 1+1+1+…; ряд расходится, т.к.

б)

Ряд будет сходиться при .


1)

в интервале ряд сходится.

2)

в интервале 3<x<8 ряд сходится.

Общий интервал сходимости –2<x<8.

На концах интервала х=-2, имеем ряд:

— расходящийся гармонический ряд.

в п.9.3.1 б) показано, что ряд сходится условно.

Ответ: (-2,8]


9.3.3.

а)

Ряд сходится при условии

1)

Решим неравенство:

корней нет, следовательно: — всегда.

Ветви параболы направлены вверх, получаем два интервала: Здесь ряд сходится.

Исследуем концы интервалов:

1) . Получаем ряд: . Ряд расходится, т.к. все его члены не меньше расходящегося гармонического ряда .

2)

б)

.

Ряд сходится при .

1) интервал сходимости .

2) интервал сходимости .

Исследуем границы интервала.


1)

По теореме Лейбница ряд сходится, причем условно, т.к. ряд — расходится.

2) .

Сравним с рядом по второму признаку сравнения

расходится, то расходится и ряд .

3.9.4.

а)


Ряд сходится при

1) тогда

корней нет, .

Решаем неравенство:

.

Решаем полученное неравенство:

В промежутке (1,3) ряд сходится.

На концах интервала имеем:

1)

Ряд расходится, т.к. .

2)

б)

Ряд сходится при условии или

Интервал сходимости .

На концах интервала.

1)

— ряд расходится, т.к. расходится ряд .

2)

Ряд, как предыдущий, но все члены отрицательны.

9.3.5.

а)

Ряд сходится при условии .

1)

2)

Исследуем концы интервала:

1)


2)

б)

Ряд сходится при условии откуда


9.3.6.

а)

Ряд сходится при

и корней нет, следовательно, имеет условие

Интервал сходимости .

Исследуем концы интервалов:

1)


Ряд знакочередующийся, проверим условие Лейбница

— выполняется

Ряд сходится при

Получим такой же ряд.

б)

Проверяем признак Даламбера:

Условие сходимости

На концах интервала имеем:


1)

Ряд знакочередующийся, признак Лейбница выполняется.

Ряд сходится условно при .

Получим такой же ряд, но члены имеют обратные знаки.

.

9.3.7.

а)

Проверяем концы интервалов

1)

Признак Лейбница выполняется, ряд сходится.

При получится такой же ряд (т.к. x в четной степени).

б)

9.3.8.

а)

Условие сходимости .

Найдем дискриминант знаменателя: D=64-72<0. Условие принимает вид

Интервал сходимости .

На концах интервала

Получаем один и тот же ряд

.

Члены этого ряда не меньше членов ряда , следовательно, ряд расходится.

б)

Условие сходимости

На краях интервалов:

1) . Получается ряд:

Ряд знакочередующийся, по признаку Лейбница сходится.

2)

9.3.9.

а)

1. Если , т.е. и необходимо решить неравенство: . Получается интервал .

2.

Интервал с учетом .

На концах интервала:

1)

Ряд сходится. Аналогично при .

.

б)

Интервал сходимости определяется неравенством


9.3.10.

а)

Найдем дискриминант числителя


б)

1)

2)


1.

2.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита01:29:14 05 ноября 2021
.
.01:29:11 05 ноября 2021
.
.01:29:09 05 ноября 2021
.
.01:29:07 05 ноября 2021
.
.01:29:05 05 ноября 2021

Смотреть все комментарии (20)
Работы, похожие на Контрольная работа: Сходимость рядов

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287425)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте