Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Единица измерения ионизирующих излучений

Название: Единица измерения ионизирующих излучений
Раздел: Рефераты по безопасности жизнедеятельности
Тип: реферат Добавлен 12:12:40 23 августа 2005 Похожие работы
Просмотров: 1598 Комментариев: 21 Оценило: 5 человек Средний балл: 5 Оценка: неизвестно     Скачать

Министерство общего и профессионального образования

КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Новороссийский филиал

РЕФЕРАТ

ПО ДИСЦИПЛИНЕ: БЖД

Тема: Единица измерения ионизирующих излучений .

Выполнил: студент группы 98 - 2ЭК - 1

Морозов Виталий Вячеславович

Проверил: преподаватель

Москофиди Александр Алексеевич

НОВОРОССИЙСК

2000

Единица измерения ионизирующих излучений

Ионизирующее излучение (проникающая ра­диация) — поток гамма лучей и нейтронов из зоны ядер­ного взрыва. За единицу измерения излучения (экспози­ционной дозы) принят кулон на 1 кг (Кл/кг) в единицах СИ. В практике в качестве единицы экспозиционной до­зы излучения часто пользуются внеснстемной единицей рентген (Р) . Поглощенная доза, т. е. доза ионизирую­щих излучении, поглощенная тканями организма, изме­ряется в радах или Греях (Гр)2 в единицах СИ. 1 рад приблизительно ранен 1 Р.

При облучении ионизирующим излучением возникает лучевая болезнь.

Лучевая болезнь I (легкой) степени развивается при общей дозе. однократного облучения 1—2 Гр (100—200 Р). Скрытый период ее длительный, достигает 4 нед и более. Нерезко выражены симптомы пе­риода разгара болезни.

Лучевая болезнь II степени (сред­ней тяжести) возникает при общей дозе облучения 2—4 Гр (200—400 Р). Реакция на облучение обычно выражена и продолжается 1—2 сут. Скрытый период достигает 2— 3 нед. Период выраженных клинических проявлений раз­вивается нерезко. Восстановление нарушенных функций организма затягивается на 2—2'/2 мес.

Лучевая болезнь III (тяжелой) степени возникает при общей дозе облучения 4—6 Гр (400—600 Р)! Начальный период обычно характеризуется выраженной симптома­тикой. Резко нарушена деятельность центральной нервной системы, рвота возникает повторно и иногда приобретает характер неукротимой. Скрытый период чаще всего про­должается 7—10 дней. Течение заболевания в период разгара (длится 2—3 нед) отличается значительной тя­жестью. Резко нарушен гемопоэз. Выражен геморрагиче­ский синдром. Более отчетливо выявляются симптомы, свидетельствующие о поражении центральной нервнои системы. В случае благоприятного исхода исчезновение симптомов болезни происходит постепенно, выздоровле­ние весьма замедленно (3—5 мес).

Лучевая болезнь IV (крайне тяжелой) степени воз­никает при облучении 6 Гр (600 Р) и более. Она характе­ризуется ранним бурным появлением в первые минуты и часы тяжелой первичной реакции, сопровождающейся не­укротимой рвотой, адинамией, коллапсом. Начальный пе­риод болезни без четкой границы переходит в период раз­гара, отличающийся чертами септического характера, быстрым угнетением кроветворения (аплазия костного мозга, панцитопения), ранним возникновением геморра­гий и инфекционных осложнений (в первые дни).

Следует отметить, что при увеличении мощности ядер­ного боеприпаса значительно увеличиваются радиусы воз­действия ударной волны и светового излучения, тогда как радиус действия ионизирующего излучения увеличивает­ся незначительно.

Ослабление ионизирующего излучения осуществляет­ся различными материалами, используемыми в качестве защиты (бетон, грунт, дерево). Они характеризуются слоем половинного ослабления, т. е. слоем, который уменьшает интенсивность воздействия излучения на чело­века в 2 раза.

Фактическая радиационная обстановка складывается на территории конкретного административного района, населенного пункта или объекта народного хозяйства в результате непосредственного радиоактивного заражения местности (и всего, что на ней расположено) и требует принятия определенных мер защиты, исключающих или уменьшающих радиационные поражения среди населе­ния, рабочих и служащих объектов народного хозяйства, медицинского персонала и больных, находящихся в меди­цинских учреждениях (формированиях) МС ГО.

Выявление фактической радиационной обстановки на объектах ГО здравоохранения, в учреждениях и форми­рованиях МС ГО осуществляется, как правило, по дан­ным радиационной разведки. При этом могут использоваться и данные прогнозирования, полученные от штабов ГО. Радиационная разведка производится в целях своевременного обеспечения начальника ГО объек­та здравоохранения и его штаба информацией о радио­активном заражении на территории объекта, в районах размещения или действий формирований и учреждений МС ГО и на маршрутах движения.

Измеренные мощности дозы ионизирующих излучений на местности являются исходными данными для оценки радиационной обстановки. Разведка ведется непрерывно постами радиационного и химического наблюдения и спе­циально подготовленными группами (звеньями) радиа­ционной и химической разведки. Главной задачей постов радиационного и химического наблюдения является свое­временное обнаружение радиоактивного или химического заражения и оповещение об опасности персонала и слу­жащих объекта здравоохранения (учреждения МС ГО) и личного состава формирований объекта.

Для проведения разведки личный состав поста наблю­дения радиационной и химической разведки оснащается средствами индивидуальной защиты, приборами радиа­ционной и химической разведки, комплектами знаков ог­раждения, индивидуальными дозиметрами, обеспечива­ется средствами связи и оповещения и другим имущест­вом, необходимым для выполнения задачи.

Для оценки радиационной обстановки по данным раз­ведки необходимо располагать следующими исходными данными.

Время ядерного взрыва, в результате которого про­изошло радиоактивное заражение объекта, маршрутов продвижения (выдвижения) или районов отдыха (разме­щения) формирований, учреждений МС ГО.

Если по каким-либо причинам время ядерного взрыва не установлено, то его определяют расчетным путем по таблице на основании двух замеров мощности дозы иони­зирующих излучений (уровней радиации) с помощью до­зиметрических приборов (табл. 1).

Таблица I. Время, прошедшее после ядерного взрыва до второго измерения (часы, минуты)

Время между двумя из­мерения­ми

Отношение мощности дозы излучения при втором измерении к мощности дозы излучения прн первом измерении P2 /P1

0,20

0.25

0,30

0.35

0,40

0.45

0.50

0,55

0,60

0.65

30 МИН

----

---

---

0.50

0.55

1.00

1.10

1.20

1.30

1.40

45 мин

1.00

1.05

1.10

1,20

1.25

1.30

1.45

1.50

2.10

2.30

1 ч

1.20

1.30

1.40

1,45

1.50

2.00

2.20

2.30

3.00

3.30

11 /2

2.00

2.10

2.30

2.35

2.50

3.00

3.30

3.50

4.30

5.00

2 ч

2.40

3.00

3.10

3.30

3.40

4.00

4.30

5.00

6.00

7.00

3 ч

4.00

4.20

4.40

5.00

5.30

6.00

7.00

8.00

9.00

10.00

4 ч

5.30

6.00

6.30

7.00

7,30

8.50

9.00

10.00

12.00

14.00

41 /2 ч

6.00

6.30

7.00

8.00

8.30

9.00

10.00

11.00

13.00

15.00

Мощности дозы ионизирующих излучений на объекте, маршрутах движения, в районах размещения формирова­ний ГО объекта (рабочих, служащих, медицинского пер­сонала) и время их измерения после ядерного взрыва. Мощности дозы ионизирующих излучений измеряются дозиметрическими приборами.

Таблица 2. Коэффициенты пересчета мощности дозы излучения на любое заданное время

Время, прошед­шее после взры­ва, ч

P0 /P

Время, прошед­шее после взры­ва, ч

P0 /P

½

0,43

7

10,33

1

1,00

10

15,85

11 /2

1.63

12

19,72

2

2,30

20

36,41

21 /2

3,00

24 (I сут)

45,31

3

3,74

30

59,23

31 /2

4,50

36

73,72

4

5,28

48 (2 сут)

104,1

41 /2

6,08

72 (3 сут).

169,3

5

6,90

240 (10 сут)

805,2

6

8,59

336 (14 сут)

1169

Примечание. P0 — мощность дозы излучения через t ч после взры­ва:

Р — мощность дозы излучения через любое время после взрыва.

Поскольку замеры мощ­ности дозы излучений на объекте проводятся неодновре­менно, целесообразно при оценке радиационной обстанов­ки рассчитывать их значение через 1 ч после ядерного взрыва (табл. 2).

Границы зон радиоактивного заражения наносят на карту или схему в следующем порядке:

точки замера мощностей дозы излучений отмечают на карте (на схеме);

измеренные мощности дозы ионизирующих излучений во всех точках по табл. 2 приводят к значениям мощности дозы излучений через 1 ч после взрыва и полученные дан­ные записывают рядом с точками замера синим цветом;

точки замера, в которых мощности дозы излучений через 1 ч после взрыва соответствуют или близки по свое­му значению мощностям дозы излучений, принятым на внешних границах зон заражения, соединяют плавной ли­нией синего Цвета для зоны А, зеленого—для зоны Б, коричневого — для зоны В и черного — для зоны Г.

Значение коэффициентов ослабления мощностей дозы

ионизирующих излучений зданиями, сооружениями, убе­жищами, укрытиями, транспортными средствами (табл.3).

Зная защитные свойства убежищ, жилых зданий, ад­министративных и производственных построек, противорадиационных укрытий, а также характер спада мощно­стей дозы ионизирующих излучений на местности, пред­ставляется возможным определить режим работы пред­приятий, в том числе медицинских учреждений, и правила поведения населения на зараженной РВ местности.

Под химической обстановкой понимаются условия, ко­торые создаются в результате применения противником химического оружия, главным образом 0В.

Сущность оценки химической обстановки состоит в определении степени воздействия 0В на людей, живот­ных, водоисточники и другие объекты, а также в выборе наиболее целесообразных действий формирований и насе­ления при проведении работ по ликвидации последствий химического .нападения противника.

В оценке химической обстановки на объекте МС ГО .принимают участие начальник ГО объекта, его штаб и командиры формирований МС ГО. Ее оценивают на ос­новании данных химической разведки; в некоторых слу­чаях оценка носит характер прогнозирования.

Для оценки химической обстановки необходимо распо­лагать следующими исходными данными:

1) вид ОВ и время его применения;

21 средства применения ОВ;

3) район применения ОВ ;

4) скорость и направление ветра;

5) температура воздуха и почвы;

6) степень вертикальной устойчивости воздуха (ин­версия, изотермия, конвекция).

Таблица 3. Средние значения коэффициентов ослабления мощно­сти дозы ионизирующих излучений укрытиями и транспортными

Средствами

Наименование укрытий и транспортных средств

Коэффициент ослабления

Открытые щели

3

Перекрытые щели

40

Автомобили и автобусы

2

Пассажирские вагоны

3

Производственные одноэтажные здания (цехи)

7

Производственные и административные трехэтажные здания

6

Жилые каменные одноэтажные дома !

10

Подвалы жилых каменных одноэтажных домов

40

Жилые каменные многоэтажные дома:

Двухэтажные

15

Пятиэтажные

37

Жилые деревянные одноэтажные дома

2

1 Значения коэффициентов ослабления гамма-излучения (К) жилыми до­мами приведены для населенных пунктов сельской местности. В городах зна­чения коэффициентов ослабления для таких же зданий будут на 20—40% выше за счет ослабления мощности дозы ионизирующих излучений рядом стоящими домами и другими наземными сооружениями.

При оценке химической обстановки необходимо во всех случаях учитывать исходное состояние формирований, учреждений МС ГО и населения: попали ли они непосред­ственно в район применения 0В или в зону распространения зараженного воздуха.

На основании оценки химической обстановки началь­ник и штаб ГО (МС ГО) оповещают формирования, уч­реждения МС ГО, население о химическом заражении местности и воздуха; делают выводы о работоспособности и возможностях формировании и населения но ликвида­ции химического заражения; определяют наиболее целе­сообразные способы действии в создавшейся обстановке, а также наиболее удобные маршруты передвижения; ус­танавливают более безопасные районы для размещения формирований, населения н животных; определяют вре­мя пребывания людей в средствах защиты, рубежи одевания н снятия средств защиты при определении районов .'| химического заражения, а также порядок проведения санитарной обработки людей и дегазации техники.

ПРИБОРЫ РАДИАЦИОННОЙ И ХИМИЧЕСКОЙ РАЗВЕДКИ, КОНТРОЛЯ РАДИОАКТИВНОГО ЗАРАЖЕНИЯ И ОБЛУЧЕНИЯ

Наличие радиоактивных осадков на местности, а также ФОВ (фосфорорганическое отравляющее вещество) , нельзя обнаружить визуально или органолептически и заражение (поражение) может произойти незаметно для человека; для своевременного и быстрого их обнару­жения в воздухе, на местности, различных предметах и а различных средах созданы специальные приборы радиа­ционной и химической разведки, контроля полученных доз облучения и степени заражения.

Для правильного использования приборов радиаци­онной разведки и контроля облучения людей, а также получения необходимой точности измерения нужно знать характеристики ионизирующих излучений, которые они регистрируют, а также принципы, на основе которых работают эти приборы.

Работа дозиметрических приборов основана на спо­собности излучений ионизировать вещество среды, в ко­торой они распространяются. Ионизация в свою очередь является причиной некоторых физических и химических изменении в веществе, которые могут быть обнаружены и измерены. К таким изменениям относятся: увеличение электропроводности (газов, жидкостей, твердых материа­лов); люминесценция (свечение); засвечнвание светочув­ствительных материалов (фотопленок); изменение цвета, окраски, прозрачности некоторых химических растворов.

В зависимости от природы регистрируемого физико-химического явления, происходящего в среде под воздей­ствием ионизирующего излучения, различают ионизаци­онный, химический, сцинтилляционный, фотографический и другие методы обнаружения и измерения ионизирую­щих излучений.

Ионизационный метод основан на явлении ионизации молекул, которая происходит под воздействием ионизи­рующих излучений в среде (газовом объеме), в результа­те чего электропроводность среды увеличивается, что мо­жет быть зафиксировано соответствующими электронно-техническими устройствами. Ионизационный метод поло­жен в основу принципа работы таких приборов, как ДП-5А (ДП-5Б), ДП-ЗБ, ДП-22В н ИД-1.

Приборы, работающие на основе ионизационного ме­тода, имеют принципиально одинаковое устройство и включают: воспринимающее устройство (ионизационная камера), электрическую схему (усилитель ионизационно­го тока), регистрирующее устройство (микроамперметр), источник питания (сухие элементы).

Химический метод основан на способности молекул некоторых веществ в результате воздействия ионизирую­щих излучении распадаться, образуя новые химические соединения. Так, хлороформ в воде при облучении разла­гается с образованием хлороводородной кислоты, которая дает цветную реакцию с красителем, добавленным к хло­роформу. По плотности окраски судят о дозе излучения (поглощенной энергии). На этом принципе основано устройство химических дозиметров ДП-70 и ДП-70М.

Сцинтилляционныи метод измерения ионизирующих излучений основан на том, что некоторые вещества (суль­фит цинка, иодид натрия) светятся при воздействии на них ионизирующих излучений. Количество световых вспышек пропорционально мощности дозы излучения и регист­рируется с помощью специальных приборов — фотоэлек­тронных умножителей. На этом принципе основано дей­ствие индивидуального измерителя дозы ИД-11.

Фотографический метод основан на способности мо­лекул бромида серебра, содержащегося в фотоэмульсии, распадаться на серебро и бром под воздействием ионизи­рующих излучений. При этом образуются мельчайшие кристаллики серебра, которые вызывают почернение фо­топленки при ее проявлении. Плотность почернения про­порциональна поглощенной энергии излучения. Сравни­вая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), получен­ную пленкой.

Единицы измерения ионизирующих излучений. Для определения и учета величин, характеризующих ионизи­рующие излучения, введены понятия доз облучения и не­которых единиц измерения: экспозиционные дозы излуче­ний, поглощенная доза, эквивалентная доза.

Экспозиционная доза рентгеновского и гам­ма-излучений—количественная характеристика излуче­ния, основанная на способности излучений ионизировать воздух. За единицу экспозиционной дозы в единицах СИ принята такая доза, при которой в 1 кг сухого воздуха образуются ионы, несущие заряд в 1 Кл электричества каждого знака. По сегодняшний день на практике ши­роко применяется внесистемная единица для экспозици­онной дозы—рентген (Р). 1 Р соответствует излучению, при котором в 1 см3 сухого воздуха образуется 1 единица заряда в системе единиц СГС, или, что то же самое— 2.08 * 109 пар ионов. 1 Р = 2,58*10-4 Кл/кг.

Для количественного измерения дозы излучения любо­го вида (включая рентгеновское и гамма-излучения) ис­пользуется так называемая поглощенная доза-энергия излучения, поглощенная единицей массы облуча­емой среды. В СИ единицей поглощенной дозы является грей (Гр), равный 1 Дж/кг. Ранее используемая внесис­темная единица поглощенной дозы рад равна 0,01 Гр.

• Поскольку различные виды ионизирующих излучений при одной и той же поглощенной дозе вызывают различ­ные по тяжести поражения живой ткани, введено понятие о биологической (эквивалентной) дозе, единицей которой в СИ является зиверт (Зв) —такая по­глощенная доза любого излучения, которая при хрони­ческом облучении вызывает такой же биологический эф­фект, как 1 Гр поглощенной дозы рентгеновского или гамма-излучения. На практике встречается внесистемная единица эквивалентной дозы — бэр (биологический экви­валент рентгена), равная 0,01 Зв.

Скорость набора дозы ионизирующих излучений ха­рактеризуется мощностью дозы, определяемой как отно­шение величины набранной дозы ко времени, за которое она была получена:

P=D/T

где Р —мощность дозы ионизирующих излучений, Р/ч;

D— суммарная доза облучения, Р;

Т— время облуче­ния, ч.

Единицей мощности поглощенной дозы в единицах СИ является 1 Гр/с, эквивалентной дозы — 1 Зв/с, экспозици­онной дозы—1 Кл/кг-с=1 А/кг. В практике дозиметрии широко применяются внесистемные единицы мощности дозы — 1 Р/ч, 1 Гр/ч, 1 мкР/с, 1 Р/год и другие единицы, образованные аналогичным образом.

Мерой количества радиоактивного вещества, выража­емой числом радиоактивных превращений в единицу вре­мени, является активность. В СИ за единицу актив­ности принято 1 ядерное превращение в секунду (расп./с). Эта единица получила название Беккерель (Бк). Внесистемной единицей измерения активности является кюри (Ки). Кюри—это активность такого количества вещест­ва, в котором происходит 3,7-1010 актов распада в 1с (3,7-1010 Бк). 1 Ки соответствует активности 1 г радия.

Список литературы

1. Гражданская оборона “Учебное пособие “ - Завьялов В.Н. // Москва 1989

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита00:06:21 02 ноября 2021
.
.00:06:19 02 ноября 2021
.
.00:06:18 02 ноября 2021
.
.00:06:18 02 ноября 2021
.
.00:06:17 02 ноября 2021

Смотреть все комментарии (21)
Работы, похожие на Реферат: Единица измерения ионизирующих излучений

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286775)
Комментарии (4153)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте