Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Шпаргалка: Задачи Циолковского

Название: Задачи Циолковского
Раздел: Рефераты по математике
Тип: шпаргалка Добавлен 08:03:37 11 февраля 2011 Похожие работы
Просмотров: 160 Комментариев: 17 Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать

Рассмотрим две задачи Циолковского: прямолинейное дви­жение точки переменной массы под действием только одной реактивной силы и вертикальное движение точки вблизи Земли в однородном поле силы тяжести. Эти задачи впервые рассматривались К. Э. Циолковским.

Первая задача Циолковского

Пусть точка переменной массы или ракета движется прямолинейно в таком называемом, по терминологии Циолков­ского, свободном пространстве под действием только одной реактивной силы. Считаем, что относительная скорость , отделения частиц постоянна и направлена в сторону, противо­положную скорости движения точки переменной массы (рис. 1). Тогда, проецируя на ось Ох , направленную по скорости движения точки, дифференциальное уравнение прямо­линейного движения точки переменной массы принимает вид

.

Разделяя переменные и беря интегралы от обеих частей, имеем

Рис. 1



,

где начальная скорость, направленная по реактивной силе; начальная масса точки.

Выполняя интегрирование, получаем

. (14)

Если в формулу (14) подставить значения величин, характеризующих конец горения, когда масса точки (ракеты) состоит только из массы несгоревшей части (массы приборов и корпуса ракеты) , то, обозначая через т массу топлива, для скорости движения v 1 в конце горения имеем

.

Вводя ч и с л о Ц и о л к о в с к о г о Z==m/ M p , получаем сле­дующую формулу Циолковского:

. (15)

Из формулы Циолковского следует, что скорость в конце горения не зависит от закона горения, т. е. закона изменения массы. Скорость в конце горения можно увеличить двумя путями. Одним из этих путей является увеличение относитель­ной скорости отделения частиц или для ракеты увеличения скорости истечения газа из сопла реактивного двигателя.

Современные химические топлива позволяют получать ско­рости истечения газа из сопла реактивного двигателя порядка 2...2,3 км/с. Создание ионного и фотонного двигателей позво­лит значительно увеличить эту скорость. Другой путь увеличе­ния скорости ракеты в конце горения связан с увеличением так называемой массовой, или весовой, отдачи ракеты, т. е. с увеличением числа Z, что достигается рациональной конструк­цией ракеты. Можно значительно увеличить массовую отдачу ракеты М 0 р путем применения м н о г о с т у п е н ч а т о й раке­ты, у которой после израсходования топлива первой ступени отбрасываются баки и двигатели от оставшейся части ракеты. Так происходит со всеми баками и двигателями уже отработав­ших ступеней ракеты. Это значительно повышает число Циолковского для каждой последующей ступени, так как уменьшается М р за счет отброшенных масс баков и двигателей.

Для определения уравнения движения точки переменной массы из (14) имеем

,

или, выполняя интегрирование после разделения переменных и считая х= 0 при t =0, получаем

. (16)

В теоретических работах по ракетодинамике обычно рас­сматривают два закона изменения массы: линейный и по­казательный. При линейном законе масса точки с течением времени изменяется так:

M=M 0 (1- a t), (17)

где a=const (a—удельный расход), а М 0— масса точки в начальный момент времени.

При показательном законе изменение массы

. (18)

Выполняя интегрирование в (16) при линейном законе изменения массы (17), получаем следующее уравнение движения:


. (19)


При показательном законе изменения массы (18) соответ­ственно

. (20)

Отметим, что при линейном законе изменения массы (17), если =const, секундный расход массы

(- dM /dt ) =aM 0 = const

и реактивная сила

= const.

При показательном законе секундный расход массы и ре­активная сила являются переменными, но ускорение точки переменной массы , вызванное действием на точку одной реактивной силы , является постоянным, т. е.

=const.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Делаю рефераты, курсовые, контрольные, дипломные на заказ. Звоните или пишите вотсап, телеграмм, вайбер 89675558705 Виктория.
00:41:23 17 октября 2021
Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
05:53:24 13 сентября 2021
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya15:36:39 01 сентября 2019
.
.15:36:38 01 сентября 2019
.
.15:36:38 01 сентября 2019

Смотреть все комментарии (17)
Работы, похожие на Шпаргалка: Задачи Циолковского

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286174)
Комментарии (4151)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте