Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Миграция химических загрязняющих веществ в биогеоценозе

Название: Миграция химических загрязняющих веществ в биогеоценозе
Раздел: Рефераты по экологии
Тип: реферат Добавлен 00:38:05 12 июня 2011 Похожие работы
Просмотров: 1458 Комментариев: 14 Оценило: 2 человек Средний балл: 4 Оценка: неизвестно     Скачать

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ И НАУКЕ

ЮГОРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ДОКЛАД

по дисциплине: «Техногенные системы и экологический риск»

на тему: «МИГРАЦИЯ ХИМИЧЕСКИХ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В БИОГЕОЦЕНОЗЕ »

Выполнила: студентка гр. 2152

Попович А.В.

Г. Ханты-Мансийск, 2009 г.

Содержание:

Миграция химических загрязняющих веществ в биогеоценозе……………..3

1. Миграция химических загрязняющих веществ в природных, грунтовых и лизиметрических водах, в почвенных растворах………………………………………5

2. Миграция химических элементов в почвенном профиле…………………..….10

Список используемой литературы………………………………………………..13

МИГРАЦИЯ ХИМИЧЕСКИХ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В БИОГЕОЦЕНОЗЕ

Миграция химических загрязняющих веществ (ХЗВ) в биогеоцено­зе как наиболее геохимически активном блоке геосистемы тесно связана с их поведением в сопряженных с почвой природных водах.

Отдельной задачей является исследование миграции ХЗВ в геоси­стемах, испытывающих активное техногенное воздействие, поскольку, например, включение металлов в металлорганические соединения может иметь иные физиологические последствия для биоты, нежели присутствие элементов в обычных для геосистем формах. Техногенно аномальные геосистемы можно рассматривать как полигоны, в преде­лах которых особенности миграции техногенных продуктов проявля­ются наиболее ярко. Это имеет большое значение для разработки методики наблюдений в системе геохимического мониторинга, выяв­ления наиболее чувствительных звеньев миграционной цепи, сигнали­зирующих о переходе геосистемы из фонового состояния в аномальное.

В процессах миграции химических загрязняющих веществ особое место занимает комплексообразование. Многие органические вещест­ва, связывая ионы металлов в комплексы, способствуют их стабилиза­ции и переносу в растворенном состоянии. Путем прямых наблюдений с мечеными соединениями установлено, что миграционная способ­ность железа в форме, связанной с различными органическими ком­понентами почвенных растворов, на 1—2 порядка и более превосходит миграционную способность ионных форм железа.

Образование металлорганических комплексов иногда имеет поло­жительное биологическое значение, инактивируя избыточные количе­ства активных ионов тяжелых металлов или благоприятствуя растворению труднодоступных, но биологически важных элементов.

На растворимость соединений тяжелых металлов большое влияние оказывает концентрация их в растворе. При очень низкой концентра­ции микроэлементы не выпадают в осадок при соответствующем изменении реакции среды и при добавлении осадителей. Этот фактор играет важную роль в случае металлов, образующих труднорастворимые соединения при величинах рН и ЕА , характерных для природных вод. Миграционная способность микроэлементов в форме комплексных соединений не безгранична: она лимитируется устойчивостью самого соединения, возможностью конкуренции со стороны другого элемента, дающего более стойкий комплекс, выпадением в осадок самой комп­лексной соли.

Растворимые комплексы с органическими соединениями образует большинство металлов. К ним, прежде всего, необходимо отнести комплексы, образуемые гуминовыми веществами и другими органиче­скими кислотами с двух- и трехвалентными металлами. Роль гуминовых веществ в переносе металлов в растворенном состоянии велика. От 50 до 75 % марганца, никеля, кобальта переносят в составе органических соединений речные воды.

В настоящее время установлено (Г.М. Варшал и др., 1983, 1985):

- что низкомолекулярные соединения неспецифической природы играют небольшую роль в переносе ХЗВ, хотя их набор довольно широк — щавелевая, фумаровая, лимонная и другие кислоты, танины, сахара, аминокислоты и пр.;

- органические соединения типа фульвокислот образуют комплексы с поливалентными катионами;

- более высокомолекулярные фракции способны связывать больше поливалентных катионов.

В работах B.C. Аржановой и П.В. Елпатьевского (1981, 1985) показана важная роль гумусового горизонта как физико-химического барьера для поллютантов, а также как арены изменения форм мигра­ции. Специфику геохимических процессов в гумусовом горизонте почв обусловливают процессы превращения органических соединений, поэтому можно ожидать значительной роли последних в закреплении или, наоборот, в дальнейшей миграции ХЗВ.

В почвенных растворах и вытяжках обнаружены аминокислоты и кислоты жирного ряда, оксикислоты, полифенолы, фульвокислоты, т. е. весь набор органических соединений, свойственный многим типам природных вод. Все эти вещества содержат функциональные группы, которые участвуют в координационных связях и образовании комп­лексных и внутрикомплексных соединений. Таким образом, ведущая роль водорастворимых органических веществ в миграции ХЗВ выяв­лена многими исследователями.

Взаимодействие гумусовых веществ с ионами металлов и другими ХЗВ включает физические (адсорбция, пептизация, коагуляция) и химические (ионный обмен, солеобразование, образование комплек­сных соединений) процессы. Адсорбция катионов на гуминовых кис­лотах может быть в некоторых случаях описана уравнением Ленгмюра. Устойчивость образующихся комплексов зависит от ряда факторов и в первую очередь от рН и ионной силы.

Эти же условия определяют связывание тяжелых металлов почвой в целом и ее компонентами. Увеличение рН от 4 до 5,5 ведет к возрастанию сорбции цинка на гидрооксидах железа и алюминия. При рН 7,5 растворимость цинка увеличивается из-за образования комп­лексов с органическим веществом. Таким образом, с изменением рН меняется роль почвенных компонентов в сорбции тяжелых металлов. Медь (II) образует комплексы в более широком интервале рН. Добав­ление меди к почвенному раствору, содержащему цинк, ведет при рН 5 к снижению сорбции последнего, что является примером взаим­ного влияния ионов тяжелых металлов (Д.С. Орлов, 1985).

Кислые почвы поглощают тяжелые металлы из растворов в меньшей степени, чем нейтральные или содержащие карбонаты. В то же время в таких почвах значительное количество меди связывается в комплекс­ные соединения. Кислые почвы имеют меньшее число активных центров, занятых протонами, и ионами алюминия, что снижает воз­можность адсорбции Си2+ и Са+2 . Карбонатные, богатые кальцием почвы могут в большей степени сорбировать тяжелые металлы. Ион кадмия при этом образует малоустойчивые комплексы. В результате Са2+ более подвижен в почвенном профиле по сравнению с Си2+ .

Высокое содержание металлов, приходящееся на единицу органи­ческого вещества, в ряде случаев можно объяснить образованием многоядерных комплексов или наличием адсорбированных комплек­сов, в которых имеется неэквивалентное взаимодействие между орга­ническими лигандами и ионами металлов.

При высоком содержании гумуса интенсивно образуются органо-металлические комплексы в коллоидной и растворимой формах, что обусловливает высокую степень их подвижности. При интенсивно промывном режиме и низких значениях рН соединения тяжелых металлов растворяются и переходят в ионную форму. На территориях, где преобладают почвы с высокой степенью засоления, можно ожидать образования труднорастворимых соединений, содержащих тяжелые металлы. При рН 6 кадмий присутствует в двухвалентной форме и полностью растворяется в водной фазе при условии, что она не содержит таких связывающих анионов, как фосфат или сульфид.

Образование Cd(OH)2 начинается при рН 9, достигая максимума при рН 11. Образование РЬ(ОН)2 О начинается при рН > 9. При рН 6—10 преобладает РЬ(ОН)+ . При рН 8,5 и концентрации хлорид-иона более 100,4 моль/л преобладают комплексы CdCl3 , CdCl4 , РЬС14 2- . В морской воде, содержащей 10"0 '25 моль/л иона СГ при рН 8,1—8,2 форма РЬОН преобладает над его хлоридными комплексами, а кадмий при­сутствует в виде CdCl2 и CdCl3 . Такая закономерность, установленная на модельных системах, несомненно, может быть справедлива и в природных условиях. В почвенном растворе обнаружено незначитель­ное (< 10 мкг/л) содержание комплексов Cd2+ с органическими ком­понентами, а также хлоридными и сульфатными лигандами (CdCl2 , CdCl3 , CdCl4 , CdSO4 ). Все эти комплексы либо заряжены отрицательно, либо нейтральны, причем ион Cd2+ обнаруживается весьма редко. Отмечена возможность присутствия меди в гуминовых кислотах и фульвокислотах в форме комплекса медь-порфиринового типа.

Рис. 1. Формы миграции тяжелых металлов в природных и почвенных водах


Гуминовые вещества активно реагируют с катионами, оксидами и гидро-ксидами металлов, образуя химически разнообразные и биологически устойчивые соединения.

Формы миграции тяжелых металлов в природных водах и, в част­ности, в почвенных, многообразны, их основные виды представлены на рис. 1. Взвешенные и коллоидные формы соединений входят в состав почвенных гранулометрических фракций, а истинно растворен­ные извлекаются в составе водных вытяжек из почв.

Таким образом, для вещественного состава водных вытяжек харак­терно следующее:

1) водные вытяжки содержат большой набор органических соеди­нений различного состава;

2) вещества, содержащиеся в водных вытяжках, способны образо­вывать комплексы с тяжелыми металлами; эти комплексы могут иметь
в природных условиях различный знак заряда;

3) на комплексообразование оказывает сильное влияние рН, конкурентное комплексообразование, ионная сила раствора, состав лигандов, наличие и состав неорганических анионов.

1 . Миграция химических загрязняющих веществ в природных, грунтовых и лизиметрических водах, в почвенных растворах

По химическому составу природные воды чрезвычайно разнооб­разны. Различия обусловлены не только качественным составом и общей концентрацией растворенных веществ, но и соотношением компонентов и различных форм их нахождения в воде. Растворенные газы находятся в природных водах в виде молекул и частично гидра-тированных соединений, минеральные и органические вещества встре­чаются в истинно растворенном, коллоидном и взвешенном состоянии.

Сложность химического состава природных вод обусловлена и тем, что один и тот же элемент может находиться в воде в разных формах в зависимости от степени растворимости его соединений, валентного состояния, способности и комплексообразованию и других химических свойств. Так, железо в зависимости от рН и окислительно-восстано­вительного потенциала встречается в природных водах в двух- и трехвалентном состояниях. Для каждого из валентных состояний ха­рактерны гидрологические моно- и полиядерные формы:

для Fe(III) - это [Fe(OH)3 ]°; [Fe(OH)2 ]+ ; [Fe(OH)]2+ ; [Fe2 (OH)3 ]3+ ; [Fe2 (OH)2 r; [Fe2 (OH)]5+ ; [Fe3 (OH)2 ]7+ ;

для Fe (II) - [Fe(OH)2 ]°; [Fe(OH)]+ ; [Fe2 (OH)3 ]\

Железо образует прочные комплексы с органическими веществами природных вод.

Принято совокупность компонентов, входящих в состав природных вод, условно делить на пять групп:

1) главные ионы, или макрокомпоненты, к которым относятся
ионы СГ, SO2- 4 , НСО- з, СО2- 3 , Na+ , K+ , Mg2+ Ca2+ ;

2) растворенные газы (кислород, азот, диоксид углерода, сероводо­
род и др.);

3) биогенные элементы (соединения азота, фосфора, кремния);

4) органические вещества.

5) микроэлементы.

Такое деление химического состава природных вод условно, по­скольку многие элементы необходимы организмам, как упомянутые биогенные элементы. Ниже рассмотрены наиболее важные группы компонентов.

Главные ионы. К главным ионам, или макрокомпонентам природ­ных вод относятся элементы, характеризующиеся высокими значени­ями кларков и хорошей растворимостью их соединений в воде. В некоторых случаях (это характерно для морских и океанических вод) к группе главных ионов относятся также Вг- и HS- .

Макроэлементы в природные воды поступают при выщелачивании горных пород и почв, а также в результате производственной деятель­ности человека. Растворение горных пород значительно возрастает под воздействием кислых вод, особенно болотных с высоким содержанием органических веществ. При этом переход катионов из породы в раствор обусловлен не только обменными реакциями, но и комплексообразованием.

Почвы сильно влияют на химический состав фильтрующихся вод: повышается минерализация маломинерализованных атмосферных осадков, изменяется ионный состав воды, возрастает способность растворов растворять минералы. При взаимодействии природных вод с почвами катионы поглощающего комплекса почв обмениваются на эквивалентное количество других катионов, содержащихся в воде.

Хорошая растворимость многих природных соединений макроком­понентов обусловливает их миграцию преимущественно в ионной форме. Простые ионы, как правило, свойственны маломинерализован­ным водам. Так, в миллимолярном растворе гидрокарбоната кальция лишь около 3,65 % ионов Са и НСО3 - связано в ионные пары, а остальные находятся в виде простых ионов. Комплексообразование для макрокомпонентов природных вод сравнительно мало характерно, поскольку все они — слабые комплексообразователи.

Биогенные элементы. В группу биогенных элементов кроме азота, фосфора и кремния часто включают железо и серу, поскольку они необходимы живым организмам, а их содержание в некоторых случаях достигает нескольких миллиграммов на 1 л воды.

Выделение биогенных элементов в отдельную группу до некоторой степени условно, поскольку множество других элементов также необ­ходимо для нормального функционирования организмов. Содержание их колеблется в очень широких пределах: от следов, часто не улавли­ваемых существующими методами определения, до единиц и десятков миллиграммов на 1 л. В наименьших количествах в природных водах встречается фосфор, содержание которого редко превышает 0,5 мг/л. Наибольшие уровни концентрации характерны для кремния, они достигают иногда 15 мг/л. Азот и железо занимают промежуточное положение, причем в морских и океанических водах они содержатся в меньших количествах, чем в речных.

Наиболее важные источники поступления биогенных элементов в природные воды разделяют на две большие группы: внешние и внут­ренние:

1) внешние источники обеспечивают поступление биогенных ве­ществ в водоемы с речным стоком, атмосферными осадками, промыш­ленными, хозяйственно-бытовыми и сельскохозяйственнымисточными водами;

2) внутренние источники обеспечивают накопление биогенных элементов в результате процессов, протекающих в самих водоемах; значительная роль в этом принадлежит первичной продукции органи­ческого вещества: поступлению из залитого ложа водохранилищ в первые годы их существования, минерализации древесной, луговой и
высшей водной растительности и отмершего планктона, а также дон­ным отложениям.

Азот. В природных водах азот находится в виде ряда неорганических и разнообразных органических соединений. К неорганическим формам этого элемента относятся аммоний, нитриты и нитраты — все хорошо растворимые. Белковоподобные соединения, полипептиды, гумусовые вещества, аминокислоты, амины, мочевина — далеко не полный пере­чень азотсодержащих органических веществ, которые присутствуют в воде во взвешенном состоянии (остатки организмов), в виде коллоид­ных и истинных растворов. Между неорганическими и органическими соединениями азота постоянно осуществляются взаимные переходы. Повышение содержания нитратов и нитритов в воде свидетельствует о загрязнении воды. В чистых водах нитрит-ионы аналитически не обнаруживаются.

Фосфор. Фосфор встречается в природных водах в форме органи­ческих и неорганических соединений, мигрируя в виде истинных коллоидных растворов и во взвешенном состоянии. Неорганический фосфор представлен соединениями ортофосфорной кислоты Н3 РО4 ; соотношение различных ортофосфатов зависит от рН воды. При рН в диапазоне от 2 до 8 подавляющая часть неорганического фосфора существует в виде Н2 РО4 . При рН от 8 до 11—12 преобладает НРО4 2- .

Значительная часть поступающих в водоем фосфат-ионов сорби­руются взвешенными в воде частицами, ибо фосфат-ионы образуют малорастворимые соединения с ионами железа, кальция, алюминия, вследствие чего их миграционная способность уменьшается. Повыша­ется она вследствие процессов комплексообразования (например, сме-шанно-лигандного), в которых большую роль играют гумусовые вещества.

Органические соединения фосфора представлены нуклеиновыми кислотами, нуклеопротеидами, фосфорилированными сахарами, фосфолипидами.

Кремний — один из наиболее распространенных элементов. Формы соединений, в которых он встречается в природных водах, довольно многообразны и зависят от минерализации, состава воды и рН среды. Часть кремния находится в истинно растворенном состоянии в виде кремниевой и поликремниевых кислот. Содержание кремния умень­шается в природных водах при потреблении его водными организмами (например, диатомовыми водорослями), переходе кремниевой кислоты при определенных условиях в гель, при сорбции и дегидратации.

Железо — непременный компонент поверхностных вод. В зависи­мости от окислительно-восстановительного потенциала, железо про­являет характерные для него степени окисления 2+ и 3+. Соединения трехвалентного железа наиболее распространены, двухвалентное желе­зо обнаруживается в водах с низкими окислительными потенциалами. Кроме растворенного ионного железа (Fe2+ , Fe3+ ) в природных водах присутствуют, как отмечалось выше, гидроксокомплексы, коллоидные неорганические и органические формы. Значительная часть железа мигрирует в поверхностных водах в форме взвешенных частиц. В природных водах многие соединения железа малоустойчивы, посколь­ку подвергаются гидролизу с последующим осаждением гидроксидов. Важным фактором в стабилизации двух- и трехвалентного железа в растворенном виде являются органические вещества природных вод, которые образуют с железом прочные комплексы.

Формы миграции железа в почвенно-грунтовых водах меняются посезонно: в период весеннего половодья при большом количестве взвешенного материала преобладают взвешенные формы, в межень большую роль в переносе железа играет органическое вещество.

Органические вещества — одна из самых сложных по качественно­му составу групп соединений, содержащихся в природных водах, она включает органические кислоты, фенолы, гумусовые вещества, азот­содержащие соединения, углеводы и т. д.

Природные воды содержат органические вещества в сравнительно невысоких концентрациях. Средняя концентрация органического уг­лерода в речных и озерных водах редко превышает 20 мг/л. В морских и океанических водах содержание Сорг еще более низкое. Содержание белковоподобных веществ, свободных аминокислот и аминов колеб­лется в поеделах 20—340, 2—25 и 6—200 мкг азота на 1 л соответственно.


Рис. 2. Органические вещества природных вод

Концентрация органических кислот и сложных эфиров редко превы­шает пределы 40—200 и 50—100 мкг/л. Содержание углеводов несколь­ко выше и нередко достигает единиц миллиграммов в 1 л. Значительную часть органического вещества природных вод составляют гумусовые вещества: гуминовые кислоты и фульвокислоты. Особенно богаты гуминовыми веществами воды северных районов страны, где концен­трация их часто составляет единицы и десятки миллиграммов на 1 л. В морских и океанических водах среднее содержание гумусовых ве­ществ ниже и редко превышает 3 мг/л.

По происхождению органические вещества природных вод делят на две большие группы (рис. 2):

1) продукты биохимического распада остатков организмов, насе­ляющих водоем (главным образом планктон),— это вещества авто хтонного происхождения;

2) органические вещества, поступающие в водоемы извне с речным стоком, атмосферными осадками, промышленными, хозяйственно-бытовыми и сельскохозяйственными сточными водами — аллохтонные вещества. Особое место в этой группе занимают гумусовые вещества почв, торфяников, лесных подстилок и других видов природных обра­зований, включающих остатки растений. Нередко в водах рек с бо­лотным питанием гумусовые вещества доминируют среди других соединений.

Органические вещества природных вод могут находиться в состо­янии истинных растворов, коллоидов и взвешенных грубых частиц (суспензий). Коллоидная форма миграции наиболее характерна для природных вод зоны гипергенеза, богатых высокомолекулярными гу­мусовыми веществами. Однако часть окрашенных органических сое­динений — фульвокислоты и некоторые формы гуминовых кислот — могут быть в состоянии истинных растворов.

Для природных вод характерна миграция органического вещества в виде взвесей, например детрита, состоящего из мельчайших органи­ческих и неорганических остатков, образующихся при распаде погиб­ших организмов. Несмотря на относительно невысокое содержание органических соединений, они играют важную роль в физико-хими­ческих и биохимических процессах, протекающих в природных водах и в значительной степени определяющих особенности химического состава вод и биологическую продуктивность водоемов.

Особое место среди этих явлений занимает комплексообразование. Многие органические вещества, связывая ионы металлов в комплексы, способствуют их стабилизации и переносу в растворенном состоянии. Образование органо-металлических комплексов имеет положительное биологическое значение, инактивируя избыточные количества ионов тяжелых металлов или благоприятствуя растворению труднодоступных, но биологически важных элементов. Благодаря наличию в составе макромолекул гумусовых веществ большого набора функциональных групп вполне закономерна возможность связывания ими в комплексы ионов различных металлов.

Микроэлементы представляют собой самую большую по численно­сти группу в составе природных вод. Как правило, к микроэлементам относятся компоненты или с высоким кларком, но низкой раствори­мостью природных соединений, или с небольшим кларком, но срав­нительно хорошей растворимостью солей.

Микроэлементы условно делят на несколько подгрупп:

1) типичные катионы (Li, Rb, Cs, Be, Sr, Ba и др);

2) ионы тяжелых металлов (Си, Rb и др.);

3) амфотерные комплексообразователи (Cr, Mo, V, W);

4) типичные анионы (Br, F, I);

5) радиоактивные элементы.

По физиологическому действию относят к микроэлементам не те элементы, содержание которых мало, а элементы, играющие роль активаторов и инициаторов биохимических процессов, а потому необ­ходимые организмам в микроколичествах.

Содержание микроэлементов в природных водах обычно невысоко в пределах от единиц до десятков, реже сотен микрограммов на 1 л, а содержание многих микроэлементов часто недоступно определению обычными химическими или физико-химическими методами. Особен­но это характерно для морских и океанических вод.

Микроэлементы в природные воды могут поступать извне и накап­ливаться за счет внутриводоемных процессов. В последние годы во многих странах антропогенный фактор в формировании химического состава природных вод становится доминирующим и тенденция за­грязнения их микроэлементами (особенно тяжелыми металлами) зна­чительно усиливается.

Формы миграции. Имеющиеся сведения о формах миграции мик­роэлементов в природных водах свидетельствуют о весьма сложном их состоянии. Миграционная подвижность зависит от химических свойств элементов, а также от сложной совокупности реакций взаимодействия органических и неорганических компонентов природных вод, механи­ческого и минералогического составов взвешенных веществ.

Для речных вод наиболее характерна миграция микроэлементов во взвешенном состоянии. Они мигрируют в составе как обломочного материала, где входят в кристаллическую решетку мине­ралов, так и в составе глинистых минералов. Взвеси гидроксидов железа и марганца адсорбируют из воды и химически связывают многие редкие и рассеянные элементы. К довольно сложному минеральному комп­лексу следует добавить органические вещества, переносимые со взве­сью и удерживающие микроэлементы.

Содержание взвешенной формы микроэлемента зависит от общего количества взвеси в речной воде. Миграция во взвешенной форме является основной для свинца, кобальта, олова, серебра. Другие ме­таллы по увеличению доли растворенных форм располагаются ориен­тировочно в следующем порядке: ванадий, марганец, никель, цинк, медь. В наибольших количествах микроэлементы во взвешенном со­стоянии переносятся водами южных рек. В северных реках могут преобладать растворенные формы микроэлементов. В водах озер и водохранилищ, в отличие от речных, роль взвесей в миграции микро­элементов резко снижена, поскольку при замедленных скоростях потоков взвешенные частицы осаждаются и элементы накапливаются в донных отложениях.

Для микроэлементов характерна также миграция в коллоид­ной форме и в форме высокомолекулярных комплексных соединений, как правило, растворимых.

Особые трудности возникают при изучении соединений элемента в различных степенях окисления, поскольку отсутствуют надежные методы их разделения. Пока лишь для немногих элементов имеются сведения о существовании их в природных водах в различных степенях окисления (Сг, Мп, V). Для некоторых элементов выяснены условия превращения одних форм в другие. Важнейшими условиями являются рН и окислительно-восстановительный потенциал природных вод, а также присутствие органических соединений.

2. Миграция химических элементов в почвенном профиле

Почва — открытая подсистема в геохимическом ландшафте, потоки вещества и энергии в которой связаны с приземной атмосферой, растительностью, с поверхностными и почвенно-грунтовыми водами. Почвы регулируют процессы миграции веществ в ландшафтах, прояв­ляя буферность в отношении загрязняющих веществ; кислые почвы могут нейтрализовать щелочные соединения, карбонатные — нейтра­лизовать кислые выпадения (М.А. Глазовская, 1981).

Значительная часть элементов, поступающих на поверхность почв с техногенными потоками, задерживается в верхнем горизонте почвы. Состав и количество удерживаемых элементов зависят от содержания и состава гумуса, кислотно-основных и окислительно-восстановитель­ных условий, сорбционной способности, интенсивности биологиче­ского поглощения. Остальные элементы проникают внутрь почвенной толщи при нисходящем токе почвенной влаги, а также механическим путем за счет деятельности почвенной фауны.

В пределах почвенного профиля техногенный поток веществ встре­чает ряд почвенно-геохимических барьеров. К ним относятся карбо­натные, гипсовые, солонцовые, глеевые, иллювиальные горизонты (иллювиально-железисто-гумусовые, иллювиальные кольматирован-ные). Наличие барьерных функций в иллювиальных горизонтах дерно­во-подзолистых почв, или в глеевых горизонтах торфяно-глеевых почв подтверждается накоплением различных микроэлементов в условиях нормального геохимического фона в незагрязненных ландшафтах. Так, для иллювиальных горизонтов характерно накопление Сn, Ni, В, а для глеевых — также Сг и V.

Часть высокотоксичных элементов может переходить в труднодо­ступные для растений соединения, другие элементы, мобильные в данной почвенно-геохимической обстановке, могут мигрировать в почвенной толще, представляя потенциальную опасность для биоты. Часть элементов может выноситься за пределы почвенного профиля, хотя в почвах с водозастойным режимом такие биогеохимически активные, легкодоступные вещества могут представлять наибольшую опасность.

Подвижность элементов в значительной степени зависит от кис­лотно-основных и окислительно-восстановительных условий в почвах. В кислых почвах с преимущественно окислительными условиями (подзолистые с хорошим дренажом) такие элементы, как Hg и Cd образуют легкоподвижные соединения, но большая группа элементов в этих условиях слабоподвижна (Pb, As, Se). В кислых глеевых почвах (тундрово-глеевые, глеево-подзолистые) подвижность большинства элементов уменьшается. Если в составе загрязняющих веществ при­сутствуют соединения серы, то малоподвижные сульфиды могут обра­зовываться в восстановительных условиях.

В нейтральных почвах подвижны соединения цинка, ванадия, мышьяка, селена, которые могут выщелачиваться при сезонном про­мывании почв. Накоплению ряда элементов в неподвижных и слабо­подвижных соединениях способствуют процессы изоморфного замещения в кристаллических решетках, сорбция, соосаждение с по­луторными оксидами, образование слаборастворимых органомине-ральных комплексов. Присутствие в составе илистой фракции монтмориллонита, неокристаллизованных полуторных оксидов, гуми-новых кислот усиливает сорбционные барьеры.

Накопление подвижных, особо опасных для биоты соединений элементов зависит от водного и воздушного режимов почв: аккумуля­ция их, наименьшая в водопроницаемых почвах промывного режима, увеличивается в почвах с непромывным режимом и максимальна в почвах с выпотным режимом. При испарительной концентрации и щелочной реакции могут накапливаться селен, мышьяк, ванадий в легкодоступной форме, а в условиях восстановительной среды — ртуть в виде метилированных соединений.

Тяжелые металлы и другие потенциально токсичные элементы обладают разной подвижностью в зависимости от кислотно-щелочных и окислительно-восстановительных условий в почвах.

В кислых почвах с преобладанием окислительных условий (почвы подзолистого ряда, хорошо дренированные) такие тяжелые металлы, как Cd и Hg, образуют легкоподвижные формы. Напротив, Pb, As, Se образуют малоподвижные соединения, способные накапливаться в гумусовых и иллювиальных горизонтах и негативно влиять на состоя­ние почвенной биоты. Если в составе загрязняющих веществ присут­ствует сера, в восстановительных условиях создается вторичная сероводородная среда и многие металлы образуют нерастворимые или слаборастворимые сульфиды.

В заболоченных почвах Mo, V, As, Se присутствуют в малоподвиж­ных формах. Значительная часть элементов в кислых заболоченных почвах присутствует в относительно подвижных и опасных для живого вещества формах; таковы соединения Pb, Cr, Ni, Со, Сn, Zn, Cd и Hg.

В слабокислых и нейтральных почвах с хорошей аэрацией (дерно­во-подзолистые, серые, лесные, дерново-карбонатные) образуются труднорастворимые соединения свинца, особенно при известковании. В нейтральных почвах подвижны соединения Zn, V, As, Se, a Cd и Hg могут задерживаться в гумусовом и иллювиальных горизонтах. По мере уменьшения кислотности опасность загрязнения почв перечисленны­ми элементами увеличивается.

Рис. 3 . Центральное положение почвы в экосистеме и возможные пути поступления в нее химических загрязняющих веществ

В слабокислых и нейтральных глеевых почвах (дерново-глеевых и перегнойно-глеевых южной части таежной зоны и зоны широколист­венных лесов) значительная часть микроэлементов образует слабопод­вижные соединения (As, Se, Cr). Свинец в этих условиях менее опасен, так как малоподвижен и практически недоступен растениям и другим живым организмам. Накопление слабоподвижных соединений элемен­тов, присутствующих в малых количествах, свойственно нейтральным почвам с высоким содержанием гумуса, черноземам и лугово-черно-земным почвам. Этому накоплению способствуют процессы изомор­фного замещения в кристаллических решетках, сорбция, соосаждение с гидроксидами железа и марганца, которые обычно присутствуют в почвах, и образование слаборастворимых минеральных комплексов.

Присутствие в составе илистой фракции монтмориллонита, не-

окристаллизованных гидроксидов, гуминовых кислот усиливает сорб-ционные свойства барьеров. Различна судьба попадающих на поверх­ность почв органических загрязнителей — нефтепродуктов, пести­цидов. Скорость их разложения также обусловлена окислительно-вос­становительными условиями, гидротермическим режимом, активно­стью микроорганизмов и рядом других условий.

Центральное положение почвы в экосистеме и возможные пути поступления в нее химических загрязняющих веществ хорошо иллю­стрирует рис. 3.


Список используемой литературы:

1. Орлов Д.С., Экология и охрана биосферы при химическом загрязнении / Д.С. Орлов, Л.К. Садовникова, И.Н. Лозановская. – М.: Высш. шк., - 2002 г. – 334 с.

3.10. НЕФТЬ И НЕФТЕПРОДУКТЫ В БИОСФЕРЕ

Самым распространенным загрязняющим веществом гидросферы является нефть и нефтепродукты. Если учесть, что в Мировой океан и поверхностные воды суши ежегодно привносится 15—17 млн,т нефти и нефтепродуктов, а 1 т нефти покрывает тонкой пленкой акваторию средней площадью 12 км2 , то потенциально 150—180 млакм2 поверх­ности Мирового океана каждый год покрывается нефтяной пленкой. Эта оценка условна, так как не учитывает скорости разложения от­дельных компонентов нефти, ее способности коагулировать, сбиваясь комками, но, тем не менее, многими исследователями отмечено, что нефтяные пятна на поверхности океанических вод между Европой и Северной Америкой уже смыкаются.

Мономолекулярный слой нефти на 50 % снижает газопропускание, и нефтяные загрязнения препятствуют нормальному газо- и теплооб­мену между атмосферой и гидросферой. Эти нарушения способны вызвать неконтролируемые изменения климата планеты, а массовая гибель фитопланктона, который, по некоторым оценкам, продуцирует около 70 % кислорода, может привести к серьезным нарушениям баланса кислорода на Земле. По меньшей мере 80 % проб природных вод в той или иной концентрации содержат нефтепродукты.

Влияние нефтяных загрязнений на жизнь океана изучено далеко не достаточно. Принято общее воздействие нефтепродуктов на состо­яние гидробионтов подразделять на пять основных категорий:

1) непосредственное отравление организмов с летальным исходом;

2) серьезные нарушения физиологической активности гидробион­
тов;

3) прямое обволакивание птиц и морских животных нефтепродук­
тами;

4) болезненные изменения в организме гидробионтов, вызванные
внедрением углеводородов;

5) изменение химических, биологических и биохимических свойств
среды обитания.

Летальное отравление морских организмов наступает в результате прямого воздействия нефтяных углеводородов на внутриклеточные процессы и особенно на процессы обмена между клетками.

В этом отношении парафиновые углеводороды с относительно короткими (С10 и менее) цепями менее опасны. Они проявляют наркотическое действие лишь в очень больших концентрациях, отсут­ствующих в нефтяных пятнах. Напротив, ароматические углеводороды, растворимые в воде, представляют большую опасность: смерть взрос­лых морских организмов может наступить после нескольких часов контакта с ними уже при концентрации 10"4 —10"2 %. Смертельные концентрации ароматических углеводородов для икринок и мальков еще ниже (табл. 52).

Массовая гибель морских организмов отмечается, как правило, в прибрежных районах, где их обитает особенно много. При загрязнении морской воды вдали от берегов, на больших глубинах, токсичные нефтяные фракции успевают частично испариться, частично раз­бавиться водой до менее опасных концентраций. Однако и в сравни­тельно невысоких концентрациях ароматические углеводороды нефти оказывают негативное воздействие на морские биоценозы.

Таблица 52. Чувствительность морских организмов к ароматическим углеводородам нефти (по Стокеру и Сигару)

Эффекты покрытия нефтепродуктами и гибели находящихся в зоне прилива планктона, низкорастущих растений и птиц хорошо известны. Нефтепродукты нарушают изолирующие свойства оперения, а при попытке очистить перья птицы заглатывают загрязнения и погибают. Только в Северном море и Северной Атлантике нефтяные загрязнения являются причиной гибели 150—450 тыс. птиц в год. В акваториях с замедленным водообменом (заливы, бухты) наблюдается почти полное уничтожение морской флоры и фауны. Нефтяные разливы в реках создают в межсезонный период непроходимый барьер для некоторых видов рыб, чувствительных к углеводородному загрязнению.

Поражение морских организмов в результате накопления аромати­ческих углеводородов в их тканях может происходить даже при очень низком содержании нефтепродуктов, если обитатели моря сравнитель­но долго пребывают в загрязненной ими среде. Присутствие полицик­лических ароматических углеводородов не только ухудшает вкус съедобных организмов, но и опасно, так как эти вещества являются канцерогенным. Так, концентрация канцерогенных многоядерных уг­леводородов в ткани мидий, выловленных в районе порта Тулон (Франция), достигала 1,3—3,4 мг/кг сухого вещества.

Попадание нефтяных углеводородов в почву также вызывает нега­тивные последствия. В районах нефтедобычи и нефтепереработки наблюдается интенсивная трансформация морфологических и физи­ко-химических свойств почв. Глубина их изменения зависит от про­должительности загрязнения, состава и концентрации компонентов нефти, ландшафтно-геохимических особенностей территории и про­является в смещении рН почвенного раствора в щелочную сторону, повышения общего содержания углерода в почве в 2—10 раз, а коли­чества углеводородов в 10—100 раз.

Существенно меняются морфологические свойства почв: усилива­ется кутанообразование, происходит изменение цветовых характери­стик почвенного профиля в сторону преобладания серо- и темно-коричневых оттенков, ухудшается структура почвы. Конечным результатом нефтяного загрязнения является формирование почвен­ных ареалов с необычными для зональных условий чертами, зональные типы сменяются техногенными модификациями, снижается продук­тивность почв вплоть до необходимости вывода загрязненных земель из сельскохозяйственного оборота.

Несмотря на опасные последствия от загрязнения нефтью и неф­тепродуктами, в небольших количествах нефть и некоторые ее компо­ненты оказывают стимулирующее действие на почвенную биоту: она является энергетическим субстратом для микроорганизмов, стимули­рует рост некоторых почвенных грибов — Paecilomyces, Fusarium. Не­которые виды Scolecobasidium обнаружены в почве, насыщенной нефтепродуктами. Эти виды целесообразно использовать в качестве биоиндикаторов на нефтяное загрязнение.

Токсичность нефти объясняется присутствием летучих ароматиче­ских углеводородов (толуол, ксилол, бензол), нафталина и ряда других фракций нефти. Эти соединения легко разрушаются и удаляются из почвы. Поэтому период острого токсического действия нефти сравни­тельно короток. В составе нефти также содержатся метан и пропан, которые окисляются соответствующими видами микроорганизмов: представители группы аэробных грамотрицательных бактерий родов Pseudomonas, Methylococcus, Methylobacter, Methylosinus. Метаноокисля-ющие микроорганизмы широко распространены в почвах газоносных районов, а также там, где идет энергичный распад органических веществ в анаэробных условиях. Микроорганизмы, использующие высшие члены гомологического ряда алканов, являются обычными обитателями почв нефтеносных районов и служат индикаторами неф­тяных месторождений или нефтяных загрязнений.

Различным уровням нефтяного загрязнения почв соответствуют особые микробные системы (поД.Г. Звягинцеву, B.C. Гузеву). Низ­кому уровню загрязнения соответствуют флуктуационные из­менения микробной системы почв, затрагивающие интенсивность микробиологических процессов.

Средний уровень загрязнения приводит к возникновению сукцессионных изменений, которые выражаются в перераспределении степени доминирования микробных видов. Этот уровень загрязнения сопровождается устойчивыми нарушениями нормального функциони­рования почвенной микробиоты.

Высокий уровень загрязнения характеризуется нараста­нием сукцессионных изменений в микробной системе, полной сменой состава микроорганизмов. Доминирующее положение занимают мик­роорганизмы, резистентные к данному загрязняющему веществу. Очень высокому уровню загрязнения соответствует практически пол­ное подавление активности микроорганизмов.

Длительное воздействие нефти на почву приводит к изменениям микробиологических свойств почвы. Появляются специализирован­ные формы микроорганизмов, способные окислять твердые парафины, газообразные углеводороды, ароматические углеводороды; это — бак­терии родов Arthrobacter, Bacillus, Brevibacterium, Nocardia, Pseudomonas, Rhodococcus, спорогенные дрожжи родов Candida, Cryptococcus, Rhodo- torula, Rhodosporidium, Sporobolomyces, Totulopsis, Trichosporon. Нефтяное загрязнение влияет на изменение численности актиномицетов, грибов, причем наименее чувствительны грибы Rhizopus nigricans, Fusarium moniliforme, Aspergillus flavus и A. ustus. Чувствительными к воздействию нефти являются нитрифицирующие бактерии. В присутствии значи­тельных количеств нефти подавляется развитие целлюлозолитических микроорганизмов. Высокую чувствительность к нефти проявляют зе­леные и желтозеленые водоросли.

Токсическое действие нефти на высшие растения изучено в лабораторном эксперименте на примере кресс-салата и костреца безостого. Посев растений сразу после загрязнения сопровождался гибелью рас­тений. Даже через год после внесения нефти на этих участках не удалось получить урожая, так как всхожесть семян составила менее 50 %.

Почвенные беспозвоночные также угнетаются высокими дозами нефти. В лабораторном опыте это было показано на примере микро­скопических клещей Tyrophagus putvecsentiae.

В полевых экспериментах даже при дозе 8 л/м2 происходит полное угнетение всех зоологических групп, причем в первую оче­редь погибают крупные беспозвоночные, более устойчивы простейшие (по Э.А. Штине, 1985).

В биогеоценозах осуществляются процессы самоочищения от неф­ти, причем скорость процесса самоочищения зависит от биоклимати­ческой обстановки. Так, в серо-коричневых солонцеватых почвах в условиях недостаточного увлажнения содержание нефти за 12 мес. снизилось на 65 %. В подзолистых и дерново-подзолистых почвах в условиях переувлажнения содержание нефти снижалось быстрее. Са­мая низкая скорость самоочищения характерна для почв суперакваль-ных ландшафтов. Наложение вторичного оглеения в почвах автономных ландшафтов также снижает самоочищающие функции почв. Зная естественные механизмы и скорость самоочищения почв, можно разрабатывать методы очистки почв от загрязнения нефтью и нефтепродуктами.

3.11. ЭКОЛОГИЧЕСКИЕ ПОСЛЕДСТВИЯ ПРОМЫШЛЕННОГО ЗАГРЯЗНЕНИЯ БИОЦЕНОЗОВ

Важная роль почвы в сохранении структуры биосферы требует прежде всего организации контроля за состоянием почвенного покро­ва. Экотоксикологические исследования воздействия предприятий цветной металлургии на почвенный и растительный покров за послед­ние годы позволили оценить изменения природной среды вблизи источников загрязнения, изучить степень неблагоприятного воздейст­вия на почвенную биоту и наметить пути преодоления опасных ток­сикологических ситуаций.

Предприятия цветной металлургии располагаются в различных почвенно-биоклиматических регионах. Воздействие выбросов этих предприятий на компоненты биосферы оказывается весьма различным в аридных и гумидных зонах, хотя существуют и некоторые общие закономерности, независимо от почвенного типа и природно-клима­тической обстановки. Несмотря на всю сложность движения воздуш­ных масс в различных почвенно-климатических регионах, потоки газопылевых выбросов и их выпадение на поверхность почвы соответ­ствуют в целом розе ветров в нижних слоях атмосферы с учетом особенностей рельефа и характера поверхности. Количество поллютантов убывает в степенной зависимости с расстоянием от источника выбросов. Вблизи импактного (точечного) источника загрязнения выделяют обычно от трех до пяти зон с повышенным (по сравнению с фоновым) в десятки и сотни раз уровнем содержания тяжелых металлов (табл. 53). На расстоянии 0,5—0,75 км от предприятий выделяется так называемая охранная зона, где содержание тяжелых металлов не контролируется. Аналогичные зоны загрязнения выделяют и для растительного покрова.

Зоны высокой степени загрязнения почв, их размеры и протяжен­ность тесно связаны с векторами розы ветров. Рельеф, городские постройки изменяют направление и скорость движения приземного слоя воздуха. Долины рек, вытянутые депрессии служат коридорами, по которым устремляются потоки воздуха, тогда как повышения рельефа могут служить препятствием и приводить к инверсии воздуш­ного потока. Штили и туманы могут способствовать выпадениям осадков вблизи источника поллютантов на небольшой территории.

Таблица 53. Зоны загрязнения и уровень содержания тяжелых металлов в почве

Зона

Расстояние от источника, км

Отношение содержания

тяжелых металлов в почвах

зоны к их содержанию

в фоновых почвах

Охранная

зона предприятия

0,5-0,75

> 100

I

0,75-1,5

200-500

II

2-4

50-10

III

4-8

5-2

IV

8-20

2-1,5

Фон

20-50

1

Площадь воздействия промышленных предприятий может дости­гать 1000 км2 для высокобуферных экосистем, возрастая в несколько раз в случае малобуферных, «расшатанных» экосистем, например в тундровой подзоне. Как правило, предприятия цветной металлургии расположены вблизи источников воды — рек и озер. При недостаточ­ной очистке сбросов в реки поступает большой набор поллютантов непосредственно от импактного источника. Кроме того, загрязняющие вещества могут поступать в виде взвесей и в растворимых формах. Как показано на примере промышленных районов, в которых применяется орошение полей водами с повышенным содержанием тяжелых метал­лов, содержание токсикантов в верхних пахотных горизонтах может достигать значительных величин на расстоянии до 20 км от источника.

Влияние оросительных вод на загрязнение почв и общую экологи­ческую ситуацию наглядно иллюстрируют результаты исследований Григоряна, проведенных в ряде районов Армении. Часть данных на примере коричневой лесной остепненной почвы приведена в табл. 54.

В почве, орошаемой загрязненными водами р. Дебед (в которую сбрасывают отходы металлургического предприятия Алаверди), содер­жится в верхних горизонтах примерно в 2 раза больше меди, в 1,2—3 раза больше никеля, в 1,5 раза — марганца, в 5—7 раз — молибдена, в 5—10 раз больше цинка, чем в почвах незагрязненных.

Таблица 54. Валовое содержание некоторых металлов в коричневой лесной остепненной почве (по Григоряну, 1990)

Почва

Гори-

Глубина, см

Валовое содержание

металлов

зонт

г/кг

мг/кг

Fe

Ti

Си

Мп

Мо

Ni

Zn

Pb

Незагрязненная, орошае-

А1

0-26

37

4,0

61

938

8

32

25

13

мая водами р. Шнох

В1

26-50

38

3,8

74

902

6

29

32

15

В2

50-75

34

3,7

58

908

5

30

31

10

ВЗ

75-95

31

3,8

69

936

5

23

22

12

ВС

95-116

31

3,6

70

826

4

23

18

8

Загрязненная, орошаемая

А

0-26

46

6,1

162

1455

44

62

240

36

водами р. Дебед

В1

25-46

42

6,4

144

1105

35

82

164

62

В2

46-62

41

6,2

90

1013

28

61

106

55

ВЗ

62-81

39

5,3

81

978

28

49

67

55

ВС

81-100

40

5,5

85

810

29

42

60

19

Характерно, что содержание таких элементов, как железо и титан, практически не изменилось, что понятно, поскольку они не входят в состав загрязняющих веществ оросительных вод. Второй характерный признак — наибольшее накопление загрязняющих элементов в верхних горизонтах почв, что однозначно указывает на их происхождение — привнос с оросительными водами.

Такие уровни загрязнения отразились и на содержании подвижных, доступных растениям форм соединений тяжелых металлов. Их коли­чество также увеличилось в 1,5—2 и даже в 5 раз. Эти изменения отразились на почвенной биоте, общих свойствах почв и почвенном плодородии. В частности, резко снизилась активность почвенных ферментов: инвертазы, фосфатазы, уреазы, каталазы; примерно в 2 раза снизилось продуцирование СО2 . Ферментативная активность — хоро­ший интегральный показатель экологической обстановки в системе «почва — растение». На загрязненных почвах резко снизилась и уро­жайность различных культур. Так, урожай томатов (ц/га) в среднем снизился от 118,4 до 67,2; огурцов — от 68,3 до 34,2; капусты — от 445,7 до 209,0; картофеля —от 151,8 до 101,3; яблок — от 72,4 до 32,6 и персиков — от 123,6 до 60,6.

Аналогичные результаты получены и на других почвах. Таким образом, вопрос о загрязнении почв является комплексным: сама почва может загрязняться, а загрязненная почва также становится источником загрязнения. Почва одновременно служит акцептором загрязня­ющих веществ и их донором для других природных сред, так как является центральным звеном в биогеохимических циклах различных элементов и соединений.

В окружающую среду поступает большое число элементов с эма-нациями предприятий цветной металлургии: до 10—20 элементов, причем до 4—6 приоритетных, или главных. Поллютанты часто не связаны с основной продукцией предприятия, а входят в состав примесей. Так, вблизи свинцово-плавильного завода приоритетными загрязнителями кроме свинца и цинка являются кадмий, медь, ртуть, мышьяк, селен, а около предприятий, выплавляющих алюминий,— фтор, мышьяк, бериллий. Поэтому экологические последствия в ок­рестностях промышленных предприятий могут быть вызваны не ос­новной продукцией, а примесями или используемыми реагентами. Значительная часть выбросов предприятий попадает в глобальный круговорот: до 50—60 % свинца, цинка, меди и до 90 % ртути.

Интенсивное действие предприятий часто наблюдается на неболь­ших площадях. Это вызвано тем, что в воздухе вблизи предприятий содержание токсикантов — тяжелых металлов, соединений мышьяка, фтора, оксидов серы, серной кислоты, иногда соляной кислоты, циа­нидов — бывает столь велико, что иногда достигаются уровни ПДК. В этих случаях гибнет травяной покров, лесные насаждения. Начинается смыв почв, развиваются эрозионные процессы, образуются глубокие овраги, сильно загрязняются почвы террас и поймы. До 30—40 % поллютантов из почвы поступает в фунтовые воды.

В экстрааридной зоне значительная буферность почв способствует некоторому смягчению негативного воздействия, но лишь до извест­ного предела. Почва служит мощным барьером для потока поллютан­тов, что обусловлено высокой почвенной емкостью поглощения. Расчеты показывают, что черноземы способны только в пахотном горизонте прочно фиксировать до 100—150 т свинца, подзолистые — до 25—35 т/га. Почва способна с течением времени активно трансфор­мировать поступающие в нее соединения. В этих реакциях принимают участие минеральные и органические компоненты, возможна также трансформация биологическим путем. При этом водорастворимые соединения переходят в ионообменные, труднорастворимые (оксиды, гидроксиды, соли с низким произведением растворимости), органиче­ское вещество образует с ионами тяжелых металлов комплексные соединения. Взаимодействие с почвой происходит по типу реакций сорбции, осаждения — растворения, комплексообразования, образова­ния простых солей. Скорость процесса трансформации зависит от реакции среды, содержания тонкодисперсных частиц, количества гу­муса.

Для экологических исследований последствий загрязнения почв тяжелыми металлами существенное значение приобретают концентрация и формы нахождения тяжелых металлов в почвенном растворе, так как подвижность тяжелых металлов тесно связана с составом жидкой фазы. Низкая растворимость оксидов и гидроксидов тяжелых металлов наблюдается в почвах с нейтральной или щелочной реакцией. Мобиль­ность тяжелых металлов наиболее высока при сильнокислой реакции почвенного раствора, поэтому токсическое влияние тяжелых металлов в сильнокислых таежно-лесных ландшафтах может быть более суще­ственным по сравнению с почвами нейтральных или щелочных ланд­шафтов.

В общем виде, учитывая растворимость соединений различных тяжелых металлов, можно расположить их по токсичности в зави­симости от степени кислотности в следующий убывающий ряд: кадмий > никель > цинк > марганец > медь > свинец > ртуть.

На токсичность влияют состав и свойства почвы, от которых зависит прочность фиксации поступающих в нее соединений тяжелых металлов. Помимо перечисленных факторов на токсичность оказывает влияние совместное действие элементов: в каких соотношениях и в какой форме они поступают в почву.

Среди предприятий цветной металлургии наиболее сильное эколо­гическое воздействие на окружающую среду оказывают комбинаты, расположенные в тундровой подзоне. Специфические природно-кли­матические условия (суровая почвенно-гидрологическая обстановка при наличии вечной мерзлоты) резко сокращают продолжительность периода, в течение которого возможна водная миграция минеральных и органоминеральных соединений элементов-поллютантов. Глееобра-зование способствует переходу ряда элементов в закисные формы, образующие более легкорастворимые соединения.

Наблюдается также резко выраженное перераспределение загряз­няющих веществ между трансэлювиальными и аккумулятивными ланд­шафтами: содержание меди в аккумулятивных ландшафтах в 2—5 раз, иногда в 15—25 раз выше, чем в почвах трансэлювиальных ландшафтов. Для никеля эти соотношения также высоки и достигают 15-кратного уровня. Поэтому степень экологических нарушений в аккумулятивных ландшафтах нарастает. В тундровых почвах естественные уровни со­держания меди, никеля, кобальта находятся в пределах, близких клар-ковым значениям для фоновых территорий. Но уже вблизи комбината, на территории зоны влияния выбросов предприятий содержание тя­желых металлов достигает существенных величин. Уровни содержания элементов в таких почвах превышают фоновые для меди в 100 раз и более, для никеля — в 50 раз, для кобальта — в 4,5 раза.

Для чувствительных к техногенному воздействию тундровых био­ценозов такие масштабы загрязнения чрезвычайно опасны. Вследствие техногенного пресса при неоднородности почвенного покрова и диф­ференцированной чувствительности растений к поллютантам проис­ходят существенные изменения флористического состава: на площади до 500 км2 вокруг источника выбросов погибают лишайники — надеж­ный индикатор неблагоприятных воздействий, древесные породы; образуется пустынная территория с мертвыми деревьями.

Сильное воздействие на окружающую среду оказывают выбросы предприятий цветной металлургии, расположенных в подзоне кислых подзолистых и дерново-подзолистых почв. Низкобуферные, ненасы­щенные основаниями и малогумусные дерново-подзолистые почвы с преобладанием агрессивных органических соединений в условиях вы­сокой кислотности, так же, как и тундровые биоценозы, испытывают значительное воздействие загрязняющих веществ.

Накопление поллютантов в гумусовом горизонте в условиях кислой среды в два раза и более превышает таковое в материнской породе; в присутствии определенного количества органических и неорганиче­ских лигандов тяжелые металлы трансформируются в более подвиж­ные, миграционно-способные соединения, которые поступают в нижележащие слои, в почвенно-грунтовые воды и за пределыданного техногенного ландшафта, усиливая неблагоприятное экологическое воздействие. Негативное влияние .тяжелых металлов существенно ос­ложняется из-за присутствия оксидов серы в составе газопылевых выбросов.

В почвах, особенно расположенных в трансэлювиальных ландшаф­тах, развиваются процессы сноса верхних гумусовых и нижележащих горизонтов в результате водной эрозии, что приводит в конечном итоге к образованию техногенной пустыни. В низкобуферных ландшафтах тундровых и дерново-подзолистых почв неблагоприятные экологиче­ские последствия химического загрязнения прослеживаются визуаль­но: это проявляется в поражении древесного и кустарникового ярусов, частичном или полном отсутствии травяного покрова, смене отдельных растительных видов, развитии эрозионных процессов, образовании территорий техногенного происхождения.

Влияние предприятий, расположенных в высокобуферных ланд­шафтах аридного или семиаридного климата (черноземы, каштановые почвы, сероземы), во' многих случаях визуально не прослеживается. Несмотря на высокое содержание тяжелых металлов в почвах и расте­ниях таких ландшафтов, даже вблизи источника выбросов существен­ных внешних изменений не происходит и ландшафт визуально не производит впечатления техногенно нарушенного. В условиях нейт­ральной или щелочной реакции почвенного раствора, присутствия значительного количества гумусовых соединений, преобладания фрак­ций тяжелого механического состава с большой удельной поверхностью тяжелые металлы находятся в неактивной, малодоступной форме и накапливаются преимущественно в верхней части почвенного профи­ля. Конечно, если объем выбросов в атмосферу не уменьшается со временем, то неизбежно буферные свойства почвы по отношению к загрязняющим веществам будут исчерпаны и начнут происходить необратимые нарушения.

Подводя общие итоги, можно выделить следующие основные этапы в реакции почв на техногенное воздействие, в эволюции их от естест­венного состояния до техногенно нарушенного:

1) накопление химических загрязняющих веществ до критического
уровня;

2) значительное изменение физических и химических свойств почв —
сдвиги в неблагоприятную сторону значений рН, емкости катионного
обмена, потеря почвенной структуры;

3) неблагоприятное воздействие почвенных условий на раститель­
ный покров, угнетение почвенной биоты и высших растений;

4) развитие процессов эрозии, дефляции;

5) полное разрушение почвенных горизонтов, деградация почв;

6) образование техногенной пустыни.

Конечно, почва имеет значительную емкость поглощения и устой­чивость по отношению к загрязняющим веществам. В почве осущест­вляются процессы трансформации различных соединений, в том числе экологически опасных, причем могут происходить как процессы пре­вращения в малотоксичные, инертные или малодоступные растениям соединения, так и увеличение относительной токсичности химических соединений вследствие растворения в кислой среде.

Химические загрязняющие вещества задерживаются почвой на различных геохимических барьерах — карбонатном, окислительно-восстановительном и др. Несмотря на протекторные свойства почвы, существуют пределы и уровни техногенного воздействия на окружаю­щую среду, превышение которых приводит к необратимым последст­виям. В экстремальных случаях техногенное воздействие приводит к такому глубокому изменению свойств почвы, что рекультивация воз­можна только путем создания нового почвенного слоя, что требует длительного времени и очень высоких затрат труда и материалов.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита15:43:28 05 ноября 2021
.
.15:43:26 05 ноября 2021
.
.15:43:25 05 ноября 2021
.
.15:43:23 05 ноября 2021
.
.15:43:21 05 ноября 2021

Смотреть все комментарии (14)
Работы, похожие на Реферат: Миграция химических загрязняющих веществ в биогеоценозе

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287744)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте