Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Применение линейного программирования для решения задач оптимизации

Название: Применение линейного программирования для решения задач оптимизации
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 00:21:15 19 апреля 2011 Похожие работы
Просмотров: 300 Комментариев: 18 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

Филиал в г. Брянске

Контрольная РАБОТА

по дисциплине

ЭКОНОМИКО-МАТЕМАТИЧЕСКИЕ МЕТОДЫ И ПРИКЛАДНЫЕ МОДЕЛИ

Вариант №2

Брянск – 2009


ЗАДАЧА 1

Задача о раскрое

1. В обработку поступили две партии досок для изготовления комплектов из трех деталей (треугольные каркасы настилов на стройплощадку), причем первая партия содержит 52 доски длиной по 6,5 м каждая, вторая содержит 200 досок длиной по 4 м каждая. Каждый комплект состоит из двух деталей по 2 м каждая и одной детали в 1,25 м.

Ставится задача поиска рационального варианта раскроя поступившего в обработку материала.

Решение:

Безусловно, в этой задаче о раскрое критерий оптимальности – «максимум выпуска (реализации) комплектной продукции». Построим возможные способы раскроя исходного материала, с этой целью составим таблицу:

Доска 6,5 м

Доска 4 м

2,0 м

1,25 м

Отходы

2,0 м

1,25 м

Отходы

х111 )

2

2

0

х215 )

2

0

0

х122 )

1

3

0,75

х226 )

1

1

0,75

х133 )

0

5

0,25

х237 )

0

3

0,25

х144 )

3

0

0,5

Введем необходимые обозначения: х ij – число досок из i -й партии (i=1,2), которое следует раскроить j -м способом.

Рассмотрим соотношения:

.


Обозначим через Z-минимальное из этих соотношений (это и будет количество комплектной продукции). Следовательно, экономико-математическая модель примет вид:

,

,

,

,

xij , Z – целые неотрицательные.

Для удобства записи заменим двухиндексные переменные xij , и Z на одноиндексные переменные yj так как это показано в таблице раскроя (Z= y8 ). ЭММ задачи будет иметь вид:

при ограничениях:

yj , j =1,8 – целые неотрицательные.

В табл.1 приведены указания на ячейки-формулы.

Таблица 1 - Формулы рабочей таблицы

Ячейка

Формула

I7

=СУММПРОИЗВ(B4:I4;B5:I5)

J9

=СУММПРОИЗВ(B$4:I$4;B9:I9)

J10

=СУММПРОИЗВ(B$4:I$4;B10:I10)

J11

=СУММПРОИЗВ(B$4:I$4;B11:I11)

J12

=СУММПРОИЗВ(B$4:I$4;B12:I12)

Реализуя приведенную модель, получим решение:

(оптимальные значения остальных переменных равны нулю).

Следовательно, в данной хозяйственной ситуации максимальное количество наборов, равное 215 шт. можно изготовить и реализовать, если:

- раскроить каждую из 15 досок длиной 6,5 м на 2 детали по 2 м и 2 детали по 1,25 м;

- раскроить каждую из 37 досок длиной 6,5 м на 5 деталей по 1,25 м;

- раскроить каждую из 200 досок длиной 4 м на 2 детали по 2 м.

В этом случае мы получим максимальную выручку.

ЗАДАЧА 2

Транспортная задача

Компания, занимающаяся ремонтом автомобильных дорог, в следующем месяце будет проводить ремонтные работы на пяти участках автодорог. Песок на участки ремонтных работ может доставляться из трех карьеров, месячные объемы предложений по карьерам известны. Из планов производства ремонтных работ известны месячные объемы потребностей по участкам работ. Имеются экономические оценки транспортных затрат (в у.е.) на перевозку 1 тонны песка с карьеров на ремонтные участки.

Числовые данные для решения содержатся ниже в матрице планирования.

Требуется:

1. Предложить план перевозок песка на участки ремонта автодорог, который обеспечивает минимальные совокупные транспортные издержки.

2. Определить, что произойдет с оптимальным планом, если изменятся условия перевозок: а) появится запрет на перевозки от первого карьера до второго участка работ; б) по этой коммуникации будет ограничен объем перевозок 3 тоннами.

Матрица планирования:

Участок работ

Карьер

В1

В2

В3

В4

В5

Предложение

А 1

3

3

5

3

1

500

А 2

4

3

2

4

5

300

А 3

3

7

5

4

1

100

Потребности

150

350

200

100

100

Решение:

1. Данная задача является транспортной задачей линейного программирования, закрытой моделью.

1) Создадим форму для решения задачи, т.е. создадим матрицу перевозок. Для этого необходимо выполнить резервирование изменяемых ячеек: в блок ячеек В3: F5 вводится «1». Таким образом, резервируется место, где после решения задачи будет находиться распределение перевозок песка на участки ремонта автодорог, обеспечивающее минимальные совокупные транспортные издержки.

2) Введем граничные условия.

Введение условия реализации предложения:

,


где - предложение i -ого карьера;

- объем перевозки песка от i -ого карьера к j -ому участку работ;

n – количество участков работ.

Для этого просуммируем ячейки B3: F3 ; B4: F4 ; B5: F5 , поместив результат в ячейки А3 ; А4 ; А5 соответственно.

Введение условия потребностей участков работ:

,

где b - потребности j-ого участка работ;

m - количество карьеров.

Для этого просуммируем ячейки В3:В5 ; С3:С5 ; D3: D5 ; E3: E5 ; F3: F5 , поместив результаты в ячейки B6 ; C6 ; D6 ; E6 ; F6 соответственно.

3) Введем исходные данные.

В ячейки А11:А13 введем предложение по карьерам, в B10: F10 потребности по участкам работ, а также удельные затраты по перевозке песка из карьера на участок работ (ячейки B11: F13 ) (см. рис.1 ).


Рис. 1 - Ввод исходных данных и граничных условий


4) Назначим целевую функцию.

Для вычисления значения целевой функции, соответствующей минимальным суммарным затратам на перевозку, необходимо зарезервировать ячейку и ввести формулу для ее вычисления:

,

где - стоимость доставки 1т песка от i- ого карьера к j -ому участку работ;

- объем поставки песка от i -ого карьера к j- ому участку работ.

Для этого в ячейку В15 вставим функцию: СУММ ПРОИЗВ (B11:F13;B3:F5).

5) Введем зависимости из математической модели. Для этого в окне Поиск решения установим целевую ячейку $B$15, установим направление изменения целевой функции, равное «минимальному значению», введем адреса изменяемых ячеек $B$3:$F$5, добавим ограничения: $A$3:$A$5=$A$11:$A$13; $B$6:$F$6=$B$10:$F$10 (см. рис.2 ).


Рис. 2 - Ввод зависимостей из математической модели


6) Введем ограничения. Для этого в окне Параметры поиска решения установим Линейная модель и Неотрицательные значения. Затем выполним поиск решения, нажав Выполнить (см. рис.3 ).


Рис. 3 - Установление параметров задачи

7) Просмотрим результаты и выведем отчет.

Таким образом, план перевозок примет вид:

- с 1-го карьера на 1-ый участок ремонта в объеме 150 ед., на 2-ой в объеме 250 ед. и на 4-ый в объеме 100 ед. (условных);

- с 2-го карьера на 2-ой участок ремонта в объеме 100 ед. и на 3-ий в объеме 200 ед. (условных);

- с 3-его карьера на 5-ый участок ремонта в объеме 100 ед. (условных).

Совокупные минимальные транспортные издержки составят 2300 у.е.

а) Если появится запрет на перевозки от первого карьера до второго участка работ, то зависимости модели и решение задачи будут выглядеть следующим образом (см. рис.4,5 ):


Рис. 4 - Ввод зависимостей из математической модели

Рис. 5 - Результаты решения

Таким образом, план перевозок примет вид:

- с 1-го карьера на 1-ый участок ремонта в объеме 150 ед., на 3-ий в объеме 150 ед., на 4-ый в объеме 100 ед. и на 5-ый участок 100 ед. (условных);

- с 2-го карьера на 2-ой участок ремонта в объеме 300 ед. (условных);

- с 3-его карьера на 2-ой участок ремонта в объеме 50 ед. и на 3-ий участок ремонта 50 ед. (условных).

Совокупные минимальные транспортные издержки составят 3100 у.е.

Отчет по результатам транспортной задачи имеет вид (см. рис.6 ):


Рис. 6 - Отчет по результатам транспортной задачи

б) Если по коммуникации от первого карьера до второго участка работ будет ограничен объем перевозок 3 тоннами, то зависимости модели и решение задачи примет вид (см. рис.7 ):

Рис. 7 - Ввод зависимостей из математической модели


Таким образом, план перевозок примет вид:

- с 1-го карьера на 1-ый участок ремонта в объеме 150 ед., на 2-ой в объеме 3 ед., на 3-ий участок 147 ед., на 4-ый в объеме 100 ед. и на 5-ый участок 100 ед. (условных);

- с 2-го карьера на 2-ой участок ремонта в объеме 300 ед. (условных);

- с 3-его карьера на 2-ой участок ремонта в объеме 47 ед. и на 3-ий участок ремонта 53 ед. (условных).

Совокупные минимальные транспортные издержки составят 3088 у.е.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита16:05:34 05 ноября 2021
.
.16:05:32 05 ноября 2021
.
.16:05:31 05 ноября 2021
.
.16:05:29 05 ноября 2021
.
.16:05:28 05 ноября 2021

Смотреть все комментарии (18)
Работы, похожие на Контрольная работа: Применение линейного программирования для решения задач оптимизации

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(287924)
Комментарии (4159)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте