Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Анализ наименьших квадратов и полиномы второго порядка

Название: Анализ наименьших квадратов и полиномы второго порядка
Раздел: Рефераты по математике
Тип: реферат Добавлен 15:12:28 24 сентября 2012 Похожие работы
Просмотров: 12 Комментариев: 17 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Подход с использованием наименьших квадратов выстраивает прямую линию через ряд цен в течение прошлого периода времени так, чтобы различие между каждой отдельной ценой и прямой линией было наименьшим. Это "наиболее подходящая" линия данных (называемая также "линией регрессии"). Под "квадратами" понимается нахождение наименьшей возведенной в квадрат разности между ценой и прямой линией. Разность возводится в квадрат, потому что некоторые точки цены находятся выше линии (положительные), а некоторые находятся ниже ее (отрицательные). Построение окончательного значения, или конечной точки, линии наименьших квадратов для каждого бара, рассчитанного для определенного периода прошлых данных, отслеживает цену более точно, чем скользящая средняя.

Формула линии наименьших квадратов проста. Прямая линия имеет исходную точку и повышается с фиксированным темпом. Например, если IBM, начав со 100 долларов, движется вверх в течение десяти дней и закрывается на 105 долларах, то прямая линия, подходящая к этим данным, будет начинаться на 100 долларах и подниматься на 50 центов в день, достигая в последний день 105 долларов.

Формула прямой линии следующая:

a0+a1*t

где

a0 = первоначальное значение линии;

a1 = наклон линии;

t = время.

В нашем примере, а0 равно 100 долларов, а1 равно 50 центов, а t равно 10 (дней). Формула имеет два члена: коэффициенты (а0 + а1) и переменные (t). Математики называют такую формулу полиномом, или многочленом, что означает, что в ней более одного члена. Поскольку t не возводится в степень, такой полином называется полиномом "первого порядка".

Хотя линия наименьших квадратов может быть лучше скользящей средней, она все же изменяет направление слишком часто, чтобы давать пригодные для торговли сигналы. Требуется формула, которая давала бы кривую линию.

Кривая линия не изменяет направление с фиксированным темпом; этот темп может убыстряться или замедляться. Математический фокус, заставляющий линию искривляться, заключается в прибавлении дополнительного условия в формулу прямой линии и возведении этого условия в квадрат (т.е. возведение во вторую степень). Формула линии, которая может искривляться, следующая: a0+a1*t+a2*t2. Это линия выглядит как парабола. Поскольку эта линия искривляется, она соответствует ценовым данным лучше, чем прямая линия, как показано на рисунке 1В. Поскольку последний член полинома возводится в квадрат, такой полином называется полиномом "второго порядка".

Так же, как расчет полинома второго порядка (парабола) показывает изменение направления тренда быстрее, чем прямая линия, полиномы более высокого порядка приближаются к цене лучше, чем прямые или параболические линии. Это показано на рисунке 1С. Чем больше членов вводится в формулу, тем ближе она соответствует ценовым данным.

Более подробную информацию см. в “Surfing the least squares curve, ” Active Trader, December 2001.

А) Линейная регрессия подгоняет прямую линию к ценам в рассматриваемом историческом периоде. Эта линия соответствует данным, но отстает от поворотов рынка. В) Полином второго порядка изгибается и, следовательно, конечная точка изменяет направление на поворотах рынка быстрее, чем линейная регрессия. С) Линия полинома четвертого порядка тесно следует за трендом рынка, быстро изменяя направление, когда рынок поворачивает.

Источник: TradeStation Pro by TradeStation Group

ЭКСПОНЕНЦИАЛЬНАЯ СКОЛЬЗЯЩАЯ СРЕДНЯЯ (EMA)

Простая скользящая средняя (simple moving average, SMA) представляет собой стандартный расчет скользящего среднего, который дает каждой ценовой точке в расчете равные значения, или вес. Например, 5-дневная SMA равна сумме пяти предыдущих цен закрытия, деленной на пять.

Взвешенные скользящие средние придают большее значение самому недавнему поведению цены. Экспоненциальная скользящая средняя (exponential moving average, EMA) взвешивает цены, используя следующую формулу:

EMA = SC * цена + (1 - SC) * EMA (вчера)

где

SC является "сглаживающей константой" между 0 и 1 и

EMA (вчера) является значением EMA предыдущего дня.

Вы можете рассчитать длину конкретной SMA для EMA, используя следующую формулу для расчета эквивалентной сглаживающей константы:

SC = 2/(n + 1)

где

n = число дней в простой скользящей средней приблизительно такой же длины.

Например, сглаживающая константа 0, 095 создает эквивалент экспоненциальной скользящей средней для 20-дневной SMA (2/(20+1) = 0, 095). Чем больше n, тем меньше константа, и чем меньше константа, тем меньшее влияние последнее будет оказывать поведение цены на EMA. На практике большинство компьютерных программ позволяет вам просто выбирать, сколько дней вы хотите использовать в скользящей средней, и какую применить форму расчета: простую, взвешенную или экспоненциальную.

ДИСПЕРСИЯ И СТАНДАРТНОЕ ОТКЛОНЕНИЕ

Дисперсия (вариантность) измеряет то, как распределена группа значений – иными словами, насколько они отличаются друг от друга. Математически дисперсия является средним квадратным "отклонением" (или разностью) каждого числа в группе от среднего значения группы, деленным на число элементов группы. Например, для чисел 8, 9 и 10 среднее равно 9, а дисперсия равна:

{(8-9)2 + (9-9)2 + (10-9)2}/3 = (1 + 0 + 1)/3 = 0, 667

Теперь рассмотрим дисперсию более широко распределенного ряда чисел: 2, 9 и 16:

{(2-9)2 + (9-9)2 + (16-9)2}/3 = (49 + 0 + 49)/3 = 32, 67

Распространенным применением дисперсии в торговле является стандартное отклонение, являющееся квадратным корнем из дисперсии. Стандартное отклонение 8, 9 и 10 равно: v0, 667 = 0, 82; стандартное отклонение 2, 9 и 16 равно: v32, 67 = 5, 72.

Чем более разнообразны изменения цены рынка день ото дня (или неделя от недели и т.д.), тем выше ее дисперсия и стандартное отклонение, и тем более переменчив этот рынок; чем более разнообразна прибыль системы, тем выше ее дисперсия и стандартное отклонение, и тем рискованнее торговля по этой системе.

Кроме того, если результаты торговли считаются "нормально распределенными" (т.е. укладывающимися в стандартную гауссианскую "колоколообразную кривую", показанную на рисунке А), одно стандартное отклонение будет содержать примерно 68 процентов всех результатов; два стандартных отклонения будут содержать примерно 95 процентов всех результатов. Например, если среднее значение ряда выборок равно 1, 21, и граница одного стандартного отклонения отстоит на 0, 11, 68 процентов значений должно находиться в области между 1, 10 (1, 21 – 0, 11) и 1, 32 (1, 21 + 0, 11).

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита20:05:10 05 ноября 2021
.
.20:05:09 05 ноября 2021
.
.20:05:07 05 ноября 2021
.
.20:05:05 05 ноября 2021
.
.20:05:00 05 ноября 2021

Смотреть все комментарии (17)
Работы, похожие на Реферат: Анализ наименьших квадратов и полиномы второго порядка

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(286786)
Комментарии (4153)
Copyright © 2005-2021 HEKIMA.RU [email protected] реклама на сайте