Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: по дисциплине: «Средства измерения неэлектрических величин» на тему: «Измерение больших линейных геометрических размеров»

Название: по дисциплине: «Средства измерения неэлектрических величин» на тему: «Измерение больших линейных геометрических размеров»
Раздел: Остальные рефераты
Тип: реферат Добавлен 19:49:04 14 сентября 2011 Похожие работы
Просмотров: 386 Комментариев: 12 Оценило: 1 человек Средний балл: 2 Оценка: неизвестно     Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ

Кафедра «Метрология и измерительная техника»

РЕФЕРАТ

по дисциплине: «Средства измерения неэлектрических величин»

на тему: «Измерение больших линейных геометрических размеров»

Выполнила: Проверил:

ст. гр. МИТ-02-1 ст. пр. Белокурский Ю.П.

Крючкова Л.Д.

2005

СОДЕРЖАНИЕ

Перечень условных обозначений, символов, единиц, сокращений и терминов..…...3

Введение….……………..………………………………………………………………..4

1 Измерение уровней……………………………………………………………….……5

2 Измерение расстояний………………………………………………………………...8

3 Поверочная схема………………………………….....................................................10

Заключение……………………………………………………………………………...11

Перечень ссылок………………………………………………………………………..12

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ, ЕДИНИЦ, СОКРАЩЕНИЙ И ТЕРМИНОВ

Гц – герц;

кг – килограмм;

кГц – килогерц;

км – километр;

м – метр;

МГц – мегагерц;

мкс – микросекунда;

мм – миллиметр;

ОКГ – оптический квантовый генератор;

с – секунда;

АМ – амплитудная модуляция;

GPS – Глобальная Позиционная Система.

ВВЕДЕНИЕ

Измерение линейных размеров требуется выполнять в значительно большом диапазоне – от долей микрометра, например, при измерении микрогеометрии шероховатостей в процессе производственного контроля чистоты отделки поверхностей в точном машиностроении до многих сотен и тысяч километров при измерении расстояний в геодезии, навигации, строительстве, тяжелом машиностроении или астрономии.

Диапазон размеров, встречающихся при технических измерениях, можно подразделить на ряд характерных групп. Это, во-первых, размеры, измеряемые в машиностроении и лежащие в диапазоне от долей микрометра до нескольких метров. Ко второй группе можно отнести размеры от 100 мм до 100 м, которые требуется измерять при определении уровней горючего в нефтехранилищах, баках самолетов и автомобилей, уровней зерна в элеваторах, разностей уровней верхнего и нижнего бьефов гидростанций и т.п. И, наконец, третья группа размеров – это расстояния между какими-либо телами, когда измеряемые размеры превосходят несколько метров и могут достигать многих тысяч километров [1]. В данном реферате рассмотрены методы измерения охватывающие вторую и третью группы размеров, а именно – от 1 метра и до тысяч километров.

1 ИЗМЕРЕНИЕ УРОВНЕЙ

Наиболее простым методом измерения уровней, т.е. расстояний порядка долей метра или нескольких метров, является применение масштабных преобразователей в виде рычажных или ременных передач с последующим измерением относительно небольших выходных перемещений.

Примером может служить серийно выпускаемый прибор УДУ-5, показанный на рис. 1.1 [2]. Металлический поплавок 8 переме­щается по направляющим тросам 6 и соединен со стальной перфори­рованной лентой 7, которая проходит в защитной трубе через на­правляющие ролики 5 и гидрозатвор 4 в виде колена, залитого незамерзающей жидкостью. Стальная лента навивается на барабан 1 или сматывается с него. Постоянное натяжение ленты обеспечивается спиральной пружиной, механически связанной с мерным зубчатым шкивом 2, зубцы которого входят в отверстия ленты, обеспечивая тем самым надежное зацепление ленты со шкивом. Вращение шкива передается на механический счетчик, установлен­ный в блоке 3 и позволяющий отсчи­тывать уровень в миллиметрах в виде пятизначного числа. В этом же блоке 3 установлен связанный со шкивом рео­статный преобразователь или кодовый диск, позволяющие производить дистан­ционную передачу результатов измере­ния уровня на расстояние 1-5 км.

Рисунок 1.1 - прибор УДУ-5:

1 – барабан; 2 - мерный зубчатый шкив; 3 – блок; 4 – гидрозатвор; 5 - на­правляющие ролики; 6 - направляющие тросы; 7 - стальная перфори­рованная лента;

8 - металлический поплавок

Прибор УДУ-5 при пределе измере­ния 12 м имеет погрешность ±3 мм при отсчете показаний по механическому счетчику, ±15 мм при применении рео­статного преобразования и ±1 мм при использовании кодового диска [3].

Широкое применение при измерении уровня находят емкостные преобразова­тели, так как в них может быть до­стигнуто линейное изменение емкости на протяжении сравнительно большой длины. В качестве иллюстрации на рис. 1.2 показано устройство уровнемера, позволяющего исключить зависимость ре­зультатов измерения от изменения диэлектрической проницаемости среды, уровень которой измеряется [4]. Датчик уровнемера (рис. 1.2, а) содержит четыре коаксиальных конденсатора, два из которых (верхние компенсационные) находятся в воздухе (С и С ), один (нижний компенсационный) полностью погружен в исследуе­мую среду (С ) и один (рабочий) частично погружен в исследуемую среду (С ).

Измерительная цепь уровнемера (рис. 1.2, б) содержит гене­ратор Г, усилитель Ус, вольтметр и два трансформатора Тр1 и Тр2 и работает в режиме статического уравновешивания. Если коэффициент усилителя достаточно велик, то можно считать, что напряжение на его входе, зашунтированном паразитной ем­костью кабеля С , практически равно нулю. Это означает, что равна нулю сумма токов, поступающих на вход усилителя через емкости С, С , С , С :

,

где - - количество витков соответствующих обмоток транс­форматоров. Отсюда


.


Выразим величины емкостей датчика через длины l соответст­вующих конденсаторов, измеряемый уровень h, емкость на единицу длины в воздухе и относительную диэлектрическую постоянную исследуемой среды . Тогда ; ; ; . Соответственно выражение для преобра­зуется следующим образом:


.

Рисунок 1.2 – Устройство уровнемера:

а) датчик уровнемера; б) измерительная цепь уровнемера

Если датчик и измерительную цепь выполнить так, чтобы соблю­дались равенства и , то получим .

Таким образом, показания прибора пропорциональны изме­ряемому уровню h и не зависят от величины диэлектрической по­стоянной ε.

На рис. 1.2, б штриховыми линиями показаны экраны, которые позволяют практически полностью исключить погрешности от емкостей кабелей, соединяющих датчик с измерительной цепью [4]. Поскольку емкости воздушных конденсаторов С и С зави­сят от диэлектрической проницаемости воздуха, которая достаточно стабильна, то вместо верхних компенсационных конденсаторов С и С (рис. 1.2, а) могут быть использованы обычные постоянные конденсаторы.

2 ИЗМЕРЕНИЕ РАССТОЯНИЙ

Простейшим и наиболее распространенным методом измерения расстояния, пройденного движущимся объектом, является подсчет числа оборотов колеса, сцепляющегося с полотном дороги. Таким методом измеряется путь автомобиля с помощью механического счет­ного механизма барабанного типа, подключаемого к трансмиссии автомобиля через соответствующий понижающий редуктор. В более сложных устройствах, например в морских лагах, передача угла по­ворота крыльчатки лага к измерительному устройству осуществляет­ся электрическим путем с помощью синхронной сельсинной передачи. А в наиболее совершенных современных приборах этого типа пре­образователь, воспринимающий скорость вращения колеса или крыльчатки, преобразует ее в частоту электрических импульсов. Пройденный путь определяется как интеграл от скорости по вре­мени путем подсчета полного числа электрических импульсов за время пути. Этот подсчет осуществляется электронными счет­чиками числа импульсов с непрерывной выдачей результатов на светящееся табло цифрового прибора и с их одновременным вводом в цифровые вычислительные или управляющие устройства.

По существу, этим же методом производится точное измерение пути на начальном, наиболее ответственном участке при запуске космических ракет. Однако из-за отсутствия в этом случае элемен­тов, «сцепляющихся с полотном дороги», в качестве исходного явления используется эффект Доплера, состоящий в кажущемся для неподвижного наблюдателя изменении частоты передатчика удаляющейся ракеты. Это изменение частоты пропорционально (как и при использовании элементов, сцепляющихся с полотном дороги) скорости движения. Поэтому подсчет электронными счет­чиками интеграла от «доплеровской частоты» позволяет получить непосредственный цифровой отсчет мгновенных значений пройден­ного пути.

Другим широко используемым методом измерения расстояний является метод радиолокации. Этот метод состоит в том, что мощным передатчиком в направлении объекта, расстояние до которого должно быть измерено, излучается короткий (например, 1 мкс) радиоим­пульс. Достигнув объекта, этот импульс отражается от него, и через некоторое время отраженный импульс возвращается обратно и воспринимается чувствительным приемником. Естественно, что вре­мя, прошедшее с момента излучения импульса до момента его воз­вращения, тем дольше, чем больше расстояние до отразившего его объекта, так как скорость распространения электромагнитных коле­баний есть величина постоянная. Эта скорость, как известно, равна с = 300 000 км/с, и если расстояние до объекта равно, например, 30 км, то ему соответствует затрата времени 200 мкс. Наблюдение таких малых отрезков времени обычно производится на экране электроннолучевой трубки.

На сегодняшний день, вследствии развития радиолокации в геодезии создаются Глобальные Позиционные Системы (Global Position System – GPS) – это спутниковые позиционные системы. Состоит из операционных спутников, работающих круглосуточно на орбите Земли, предоставляя информацию по всему миру, в любую погоду, 24 часа в сутки в любом положении.

Приемник вместе с контролирующим программным обеспечением – это передовая система для сбора географических данных. Эти системы GPS разработаны для точной картографии, создания и современного составления баз данных Географической Информационной Системы. Вместе с высокооперационным контролирующим программным обеспечением и точным приемником вы можете быстро определить точное месторасположение и записать информацию в цифровой форме, которая позже может быть оттранслирована в пространственную базу данных по вашему выбору.

Комбинированная спутниковая дифференциальная антенна – активная антенна, разработанная, чтобы фильтровать и усиливать сигнал для передачи по кабелю антенны к приемнику, а также для фильтрации сигнальных помех типа АМ (амплитудная модуляция) радиотрансляции и шумов от переключающихся источников питания.

Описанный метод не пригоден для измерения малых расстояний (меньше нескольких километров), так как в этом случае затрачивае­мое время становится слишком малым. Поэтому для измерения расстояний в несколько сотен метров удобнее использовать для лока­ции не электромагнитные, а акустические колебания, скорость распространения которых много меньше. Для газового акустичес­кого канала частота колебаний выбирается в пределах 18-25 кГц, а для твердых тел и жидкостей частота ультразвука принимается равной 0,5-10 МГц [4].

Наиболее типичным примером использования акустической локации может служить измерение глубины моря с помощью ультра­звуковых эхолотов. Скорость распространения звуковых и ультра­звуковых колебаний в морской воде составляет около 1,5 км/с, т.е. в 200 000 раз меньше скорости распространения электро­магнитных колебаний. Поэтому данным методом могут измеряться как достаточно большие (несколько километров) расстояния.

С появлением и развитием оптических квантовых генераторов (ОКГ) для точного измерения расстояний стали применять локацию световыми волнами.

В импульсных светодальномерах выходной величиной является интервал времени, необходимый для прохождения световым сигна­лом (короткой вспышкой) расстояния от источника до объекта и обратно. В другой разновидности светодальномеров применяют непрерывное излучение, модулированное по интенсивности сину­соидальным сигналом частоты f. Выходной величиной такого даль­номера служит разность фаз между напряжением на выходе прием­ника оптического излучения и модулирующим напряжением. При измерении расстояний порядка 15-20 км частоту модулирующего напряжения выбирают около 60 МГц, при этом разность фаз φ не превышает 2π. В современных светодальномерах модуляция света осуществляется с помощью практически безинерционных электро­оптических ячеек Керра или Поккельса [5], позволяющих с по- мощью электрического поля осуществлять амплитудную модуляцию света в полосе частот от 0 до 109 -1010 Гц.

Для создания узконаправленного потока электромагнитного излучения в радиолокации используются антенны, размеры которых должны быть значительно больше длины волны излучения. Ввиду того, что длины волн оптического диапазона составляют доли микрон, оптические «антенны», роль которых выполняют зеркально-линзовые системы, получаются весьма компактными и позволяют формировать весьма острона­правленные световые потоки. Так, угол расходимости излу­чения лазеров может достигать нескольких угловых секунд. По указанным причинам опти­ческие дальномеры обладают существенными преимущест­вами перед радиолокаторами: меньшими габаритами, массой, стои­мостью и более высокой точностью. Выпускаемые промышленностью для геодезических работ светодальномеры [6] имеют массу по­рядка 10-20 кг и обеспечивают в любое время суток измерение расстояний до 15-20 км с погрешностью ± 10 мм.

3 ПОВЕРОЧНАЯ СХЕМА

Вторичный эталон предназначен для воспроизведения и хранения единицы длины в диапазоне 20-5000 м и передачи размера единицы длины с помощью рабочих эталонов рабочим средствам измерительной техники с целью обеспечения единства измерений в стране.

Вторичный эталон обеспечивает воспроизведение единицы длины с суммарной погрешностью измерения , которая не превышает (0,05×10L) мм при доверительной вероятности 0,97 [7].

Среднеквадратическое отклонение результата измерений не превышает 0,1 мм, при 11 независимых наблюдениях [7].

Вторичный эталон применяют для передачи размера единицы длины: геодезическим базисам в диапазоне от 20 до 100000 м, оптическим дальномерам в диапазоне от 20 до 15000 м, светодальномерам в диапазоне от 20 до 50000 м, радиодальномерам в диапазоне от 500 до 100000 м, импульсным светодальномерам в диапазоне от 20 до 100000 м и спутниковым навигационным системам в диапазоне от 20 до 100000 м.

В качестве рабочих эталонов 1-го разряда применяются интерференционные измерители длины в диапазоне от 1 до 50 м.

Доверительная абсолютная погрешность δ рабочих эталонов 1-го розряда не должна превышать значения (0,35 + 0,5L) мкм при доверительной вероятности 0,97 для интерференционных измерителей длины.

Рабочие эталоны 1-го разряда применяют для поверки рабочих эталонов 2-го и 3-го разрядов и рабочих средств измерительной техники методом прямых измерений и сличений с помощью компаратора.

В качестве рабочих эталонов применяют линейные базисы в диапазоне 20- 100000 м.

Доверительные абсолютные погрешности δ рабочих эталонов не должны превышать (2×10L) мм [7].

Рабочие эталоны применяют для поверки рабочих средств измерительной техники методом прямых измерений.

В качестве рабочих средств измерительной техники применяют оптические дальномеры в диапазоне от 20 до 15000 м, светодальномеры в диапазоне от 20 до 50000 м, импульсные светодальномеры в диапазоне от 20 до 100000 м, радиодальномеры в диапазоне от 500 до 100000 м и спутниковые навигационные системы в диапазоне от 100 до 100000 м.

Границы допустимых абсолютных погрешностей δ рабочих средств измерительной техники составляют от (0,5+1×10L) мм до 2×10 мм для дальномеров разных типов и (10+5×10L) мм для спутниковых навигационных систем.

ЗАКЛЮЧЕНИЕ

В данном реферате рассмотрены различные методы измерения больших линейных геометрических размеров и их реализация. Это обусловлено тем, что каждый из методов реализуется при измерениях в своем более узком диапазоне измерений, что связано с нелинейной характеристикой преобразователя и ее линейностью в ограниченном диапазоне длины для измерения уровней; а также удобством, сложностью либо помехозащищенностью для измерений расстояний. Например, измерение уровней: масштабный преобразователь (от 100 мм до нескольких метров), емкостные преобразователи (от 100 мм до 100 м); измерений расстояний: подсчет электронными счетчиками интеграла от «доплеровской частоты» (зависит от разрядности счетчика), радиолокационные (от нескольких километров до нескольких тысяч километров), светолокационные методы (от нескольких километров до 15-20 км), акустическая локация (от сотней метров до нескольких километров). Радиолокаторы применяют в диапазоне от 15-20 км до нескольких тысяч километров, а в диапазоне от нескольких километров до 15-20 км применяют светолокаторы, точность которых в этом диапазоне выше, а габариты и масса существенно меньше, чем у радиолокаторов. На более значительных расстояниях оказывает существенное влияние затухание оптических волн в пространстве, а также зависимость их распространение от времени суток и погоды, что исключается в случае с радиоволнами. Для небольших расстояний время прохождения волны, которое зависит от расстояния пройденного этой волной, мало, что вызывает сложности его измерения, поэтому применяют волны с более низкой скоростью распространения – акустические.

ПЕРЕЧЕНЬ ССЫЛОК

1. Электрические измерения неэлектрических величин / Под ред. П.В. Новицкого. – 5-е изд., перераб. и доп. – Львов: Энергия, 1975. – 576 с.

2. Макаров А.К., Свердлин В.М. Автоматические устройства контроля уровня. – Львов: Энергия, 1966. – 181 с.

3. Агейкин Д.И., Костина Е.Н., Кузнецова Н.Н. Датчики контроля и регулирования. – М.: Машиностроение, 1965. – 928 с.

4. Карандеев К.Б., Гриневич Ф.Б., Новик А.И. Емкостные самокомпенсированные уровнемеры. – М.: Энергия, 1966. – 136 с.

5. Модуляция и отклонение оптического излучения / Т.П. Катыс, Н.В. Кравцов, Л.Е. Чирков, С.М. Коновалов. – М.: Наука, 1967. – 167 с.

6. Геодезия / А.В. Маслов, А.В. Гордеев, Н.Н. Александров и др. – М.: Недра, 1972. – 525 с.

7. ДСТУ 3741-98. Преобразователи термоэлектрические. Общие технические условия. – К.: Держстандарт Украини, 1994. - 22 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита01:42:03 06 ноября 2021
.
.01:42:01 06 ноября 2021
.
.01:42:00 06 ноября 2021
.
.01:41:58 06 ноября 2021
.
.01:41:57 06 ноября 2021

Смотреть все комментарии (12)
Работы, похожие на Реферат: по дисциплине: «Средства измерения неэлектрических величин» на тему: «Измерение больших линейных геометрических размеров»

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294204)
Комментарии (4230)
Copyright © 2005-2022 HEKIMA.RU [email protected] реклама на сайте